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Abstract

This thesis presents an in-depth study for high-quality and flexible voice conversion

(VC) using statistical spectral and waveform modeling techniques. Using VC, voice

characteristics of a source speaker can be transformed into that of a target speaker

while preserving the linguistic contents. To develop a VC, representations of vocal-

tract resonance characteristics of the source speaker, such as vocal-tract spectrum pa-

rameterizations, have to be converted into that of the target speaker. Along with the

source-excitation (pitch) characteristics, the converted speech waveform is generated

using the transformed speech parameterizations. A high-quality and flexible VC can

be beneficial for many speech applications in research and in daily life. In this work,

the high-quality aspect is examined through the use of data-driven statistical wave-

form modeling, whereas the flexible aspect is examined through the use of data-driven

statistical spectral modeling.

The statistical spectral modeling is developed to model the mapping function of the

vocal-tract spectrum parameterizations, e.g., spectral envelope parameters, between

the source and the target speakers. Another possible representation of resonance char-

acteristics modeling is by the means of physical approach, such as through the use

of articulatory (speech organs) configurations. The latter has the advantage of being

more flexible in terms of direct control. Whereas, the former has the advantage on

being more flexible in terms of system development, owing to the more straightforward
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methods to obtain spectral envelope parameters. On the other hand, the statistical

waveform modeling is developed to model the speech waveform signal generation from

speech parameterizations, such as spectral envelope and excitation parameters. An-

other way to generate speech waveform is to employ conventional rule-based approach

for the generation procedure based on the source-filter theory of speech production

(vocoder). The latter has the advantage of not requiring any model training, though

the quality is limited. On the other hand, the former has the advantage of being able to

produce natural sounding synthetic speech, thanks to the use of data-driven approach,

such as with neural network model, i.e., neural vocoder. In this thesis, the high-quality

aspect is emphasized by the usage of neural vocoder in VC, while the flexibility aspect

is emphasized on the development of statistical model for spectral mapping.

To achieve the goal of this thesis, four main frameworks are elaborated, which cor-

respond to the contribution for high-quality and flexible VC. First is the development

of voice modification with articulatory manipulation, which enables flexible control of

speech sounds by means of the intuitive representations of articulatory information.

Second is the development of VC with neural-network (NN)-based spectral and wave-

form modeling, which uses spectral envelope parameters as vocal-tract representations.

Third is the improvement of NN-based VC framework to achieve high-quality converted

speech by performing fine-tuning of neural vocoder. Finally, in the fourth system, the

flexibility in the development of VC is achieved by means of nonparallel spectral map-

ping model framework, which does not require parallel (paired) data between source

and target speakers.

In order to develop a voice modification with articulatory manipulation system,

Gaussian mixture model (GMM)-based statistical modeling is employed to perform

both of the acoustic-to-articulatory (inversion) mapping and the articulatory-to-acoustic
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(production) mapping. A sequential mapping procedure between inversion and pro-

duction mappings is developed to enable the manipulation of intermediate articulatory

representations for performing speech modification. To yield higher quality of modified

speech, the vocoder-based excitation generation is avoided through direct filtering of

input speech waveform with the use of differential spectrum that is calculated between

the input and the modified spectral parameters. The experimental results demon-

strate that the system is capable of producing modified vowel sounds by manipulation

of tongue positions, and the use of direct waveform modification yields significant

quality improvements for varying modification of articulation efforts, i.e., hypo- and

hyper-articulations.

In the second system, a VC framework is developed by means of NN-based modeling

for spectral mapping. Further, an NN-based modeling is also used to directly model

the speech waveform signal by conditioning on spectral and excitation parameters, such

as a WaveNet vocoder. However, owing to the use of converted spectral parameters

instead of natural parameters in the synthesis time, there exist mismatches between

the spectral and the waveform modeling. To reduce these mismatches, a postprocessing

method based on the direct waveform modification is used to obtain refined converted

spectral envelope parameters. The experimental results demonstrate that the NN-

based VC is capable of achieving higher quality and speaker similarity in cross-gender

conversion compared to using conventional vocoder-based excitation generation and

achieving higher speaker similarity in same-gender conversion compared to using direct

waveform modification method.

In the third system, the NN-based VC is improved through the use of recurrent

neural network (RNN)-based architecture for spectral mapping modeling and the fine-

tuning of the WaveNet vocoder. This is because the use of postprocessing method
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does not directly address the mismatches within the WaveNet vocoder. However, it

is not straightforward to achieve fine-tuning of WaveNet vocoder in VC due to the

difference of temporal structure between source and target speakers. In other words,

the converted spectral parameters from the source speaker cannot be used to fine-tune

a WaveNet vocoder using the target speech waveform. To perform WaveNet fine-

tuning in VC, a cyclic RNN structure is introduced, which can produce both of the

converted source spectral parameters and the appraisal of estimated (oversmoothed)

target spectral parameters. The oversmoothed target spectra obtained from the cyclic

flow is used for WaveNet fine-tuning. The experimental results demonstrate that the

CycleRNN-based spectral mapping model makes it possible to perform proper WaveNet

fine-tuning in VC by significantly improving the quality and the speaker-similarity of

the converted speech compared to the previous VC framework.

Finally, in the fourth system, the flexibility for developing voice conversion is achieved

by means of nonparallel spectral modeling using variational autoencoder (VAE) frame-

work. In the previous two systems, the statistical spectral models are developed with

a parallel dataset between source and target speakers where they utter a same set of

sentences. However, nonparallel speech datasets of source and target are more practi-

cal to be obtained, especially for speakers with different language. To achieve that, a

VAE-based VC is employed, where the shared characteristics between speakers, such

as phonetics, are to be captured within a latent space, and the speaker-dependent

characteristics are to be determined by time-invariant speaker-coding features. How-

ever, owing to the inability to explicitly optimize converted spectral features (only

reconstruction is considered), the performance of VAE-based VC is limited. To im-

prove the VAE-based VC, a cyclic flow is introduced to recycle the converted spectra

back into the system to obtain cyclic reconstructed spectra that can be directly op-
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timized. The experimental results demonstrate that the CycleVAE-based VC gives

significant improvements in quality and speaker-similarity of converted speech, espe-

cially for cross-gender conversions, as well as improvements in the disentanglement of

speaker-independent and speaker-dependent traits from the latent space.

In summary, in this thesis, an investigation for achieving high-quality and flexible

voice conversion system is conducted through the aforementioned four frameworks. The

possibility of having flexible control is investigated through the development of articu-

latory controllable speech modification system, where speech sounds can be intuitively

modified by manipulating the intermediate articulatory representations. To achieve VC

in this way, in the future, it is necessary to model the physical vocal-tract shape with

articulatory representations. Next, flexibility in the development of VC system is uti-

lized through the use of NN-based spectral mapping model with parallel (paired) data,

where spectral envelope parameters are more straightforward to be obtained compared

to articulatory data. Then, the use of neural vocoder in VC is thoroughly investigated

to achieve high-quality output, where the mismatches of spectral parameters are dealt

with a spectral postprocessing method or with neural vocoder fine-tuning. Finally, to

achieve flexible VC system for practical real-world applications, a nonparallel spectral

modeling, which utilizes latent space to capture shared traits between different speak-

ers, is presented. The last approach can be easily extended with the neural vocoder

fine-tuning approach to ultimately achieve high-quality and flexible VC.





1 Introduction

1.1 Background

Speech is a signal produced by our speech organs (articulators) in such a way that

when it is propagated through the ear organs and the brain of a listener, it would

convey the corresponding intention of the speaker (speech producer) according to the

phonetical and grammatical rules of the language and the comprehension level of the

listener. It is therefore highly reasonable to take into account that speech is an essential

component in daily life owing to its unavoidable use for communication.

Recently, a lot of progress has been made in the machine learning area for autom-

atization and supports in daily life activities. This also includes many works on the

advancements of technology for speech processing and automation. One such example,

which is the main focus in this thesis, is a system that can flexibly modify the voice

characteristics within the speech signal by harnessing machine learning techniques, i.e.,

voice conversion [1–3]. Using a voice conversion system, the voice characteristics of a

source speaker can be transformed into that of a target speaker while preserving the

linguistic contents of the speech. In practice, voice conversion can be used in a variety

of speech applications, such as for singing voice conversion [4], recovery of impaired

speech signal from handicapped people [5, 6], expressive speech synthesis [7, 8], and

for body-conducted speech processing technology [9, 10]. Hence, it would be a fine

contribution to work on the development of a dependable voice conversion framework.
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Figure 1.1: General flow of a voice conversion system.

In general, the flow of a voice conversion system can be depicted as in Fig. 1.1. The

conversion of voice characteristics between source and target speaker can be achieved

by transforming the vocal-tract resonance characteristics and the vocal-fold excitation.

The converted speech can be generated from these transformed speech representations

(parameters), such as with the use of a source-filter vocoder [11–13]. In this thesis,

in order to develop a voice conversion framework, techniques for performing transfor-

mation of vocal-tract characteristics, such as for the mapping of vocal-tract spectrum,

and techniques for synthesizing speech waveform signal are investigated.

In particular, in this work, the development of voice conversion system with the use

of machine learning frameworks, such as data-driven statistical modeling techniques, is

extensively studied. In a statistical voice conversion system, the conversion procedure

between source and target speaker is performed with a statistical model that is trained
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Figure 1.2: Different approach to model vocal-tract transformation, i.e., through vocal-

tract shape modeling (physical-based) or through vocal-tract spectrum modeling (ex-

tracted from speech signal).

from available data, i.e., data-driven. This can include the creation of a statistical

model for the mapping of the spectral parameters [3] and of a statistical model for

synthesizing the speech waveform signal [14]. The use of statistical techniques for both

of spectral and waveform modeling is performed with the goal in mind to achieve a

high-quality and flexible voice conversion framework, which can be beneficial to speech

applications in research and in daily life.

1.2 Issues to be considered in this Thesis

As illustrated in Figs. 1.1 and 1.2, the vocal-tract transformation can be performed

by the means of vocal-tract shape modeling or vocal-tract spectrum modeling. In this

thesis, the investigations are mainly done on the development of vocal-tract spectrum

modeling, such as statistical model for mapping of spectral envelope parameters be-
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Figure 1.3: Synthesis procedure with conventional vocoder, direct waveform modifica-

tion, or data-driven neural vocoder.

tween source and target speakers [3, 15]. On the other hand, another study on the

use of articulatory (speech organs) configurations [16] is also conducted, which has a

potential to be further developed for the vocal-tract shape modeling to achieve voice

conversion. The latter approach has the advantage of being more flexible in terms of

control, thanks to the intuitive representations of articulatory representations [17, 18],

such as the positions of tongue or lips. However, it is not straightforward to obtain

such articulatory data [19] for the development of statistical model. The flexibility in

system development is achieved by the use of direct mapping of spectral parameteriza-

tions, such as spectral envelope parameters [20, 21], which can be obtained in a more

straightforward manner [13,22].
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Figure 1.4: Fine-tuning waveform model to achieve high-quality converted speech due

to mismatches with natural speech features.

Aside of the spectral modeling, another important aspect that needs to be taken

into account is the synthesis module used in the voice conversion system. As has been

briefly mentioned and illustrated in Fig. 1.3, the usual way is to use the conventional

vocoder [11, 13, 22], which utilize the source-filter theory [11, 12] of speech production

with predefined assumptions on the generation procedure using the vocal-fold excitation

parameters (source) and the vocal-tract spectral parameters (filter). However, owing

to those assumptions, the quality of the generated speech is limited compared to the

natural speech. One possible way to alleviate the quality degradation is by avoiding

the use of vocoder-based excitation generation through employing direct waveform

modification technique [4], as depicted by the middle flow in Fig. 1.3. The use of direct

waveform modification in VC has significantly improved the quality of converted speech,

although its usage is limited for same-gender conversions, owing to the avoidance of

source-excitation (pitch) parameterizations.

Another alternative way to achieve speech waveform generation is through the use

of data-driven statistical model that directly models the speech waveform signal. As



6 1 Introduction

Figure 1.5: Nonparallel spectral modeling for voice conversion, i.e., with different sen-

tence set between speakers.

illustrated in the bottom flow of Fig. 1.3, such model would also be conditioned on

similar speech parameters, such as source-excitation and spectral. However, thanks

to the data-driven approach, e.g., with neural network modeling [14, 23, 24], natural

sounding synthetic speech can be generated. In this work, to achieve not only flexi-

ble, but also high-quality voice conversion, direct speech waveform modeling through

the use of statistical neural network architecture, i.e., neural vocoder, is also studied.

Specifically, owing to the mismatches that occur between the source spectral parame-

ters converted by using the spectral modeling and the target spectral parameters, the

quality of converted speech even if using neural vocoder will be degraded [25]. Hence,

as depicted in Fig. 1.4, a fine-tuning approach of waveform model has to be done by

considering the temporal and accuracy mismatches that might occur due to the use of

statistical spectral model in VC [26].

Lastly, going back again to spectral mapping modeling, the use of nonparallel (un-

paired) data between source and target speakers has to be considered as depicted in

Fig. 1.5. This is because not all of the time paired data for parallel training procedure
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can be obtained. Therefore, to ultimately realize flexible VC development, nonparallel

spectral modeling framework [27–29] is a must.

In summary, in this thesis, four main issues are investigated to achieve high-quality

and flexible voice conversion system by using statistical techniques in spectral and

waveform modelings. First is the issue of spectral modeling framework in general,

where physical-based approach with intermediate articulatory representation can be

used to provide flexibility in direct control, while a more straightforwad approach with

spectral envelope features as parameterizations of vocal-tract spectrum is more flexible

in terms of system development, owing to the flexibility of obtaining spectral enve-

lope data compared to articulatory data. Second is the issue of speech generation

procedure, where there are three possible framework to be chosen, i.e., conventional

vocoder, direct waveform modification to avoid the vocoder-based excitation genera-

tion, and the statistical waveform model with neural network. Third is the issue of

quality degradation in using statistical waveform modeling for VC and the possible

approach in model fine-tuning procedure to achieve high-quality VC output while still

allowing pitch conversion, such as for cross-gender cases. Finally, the fourth issue is

the nonparallel spectral modeling problem to ultimately achieve flexible VC system

development without the need of any paired (parallel) data between speakers. These

issues are addressed by the proposed frameworks within the scope of this thesis, which

are briefly overviewed in the next section.

1.3 Scope of this Thesis

This section gives the overview of the proposed frameworks within the scope of this

thesis following the issues described in the previous section. Specifically, this thesis

presents four frameworks in the investigation for achieving high-quality and flexible
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voice conversion technology. First is the statistical voice modification with articula-

tory mapping and manipulation, which makes it possible to perform flexible speech

modification through manipulation of intuitive articulatory representations (flexible

control). Second is the statistical voice conversion (VC) system based on neural net-

work (NN) spectral and waveform modeling, which makes use of spectral envelope pa-

rameterizations that can be obtained in a more straightforward/flexible manner com-

pared to articulatory representations (flexible system development and high-quality

output). Third is the improvement of NN-based VC framework with fine-tuning of

waveform modeling (neural vocoder) to achieve high-quality converted speech (higher-

quality output). Fourth is the nonparallel spectral mapping model based on the use

of variational autoencoder (VAE) framework to achieve flexible VC development with

arbitrary/unpaired data between source and target speakers (more flexible system).

1.3.1 Statistical Voice Modification with Articulatory Map-

ping and Manipulation

In the first system, a statistical approach to use physical-based representations of

vocal-tract characteristics is investigated. Specifically, this framework is capable of

estimating articulatory representations from an input spectral envelope parameters

(inverse mapping), and estimate modified spectral envelope parameters after perform-

ing manipulation of the articulatory representations (production mapping) [18]. Both

of the aforementioned mappings are developed with Gaussian mixture model (GMM)-

based technique [16], on which the intermediate articulatory representations are made

to be available for intuitive manipulation of speech sounds. As depicted in Fig. 1.2,

the use of articulatory information allows more flexible approach for direct control of

speech signal, though, with the downside that it is not so straightforward to obtain
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articulatory data for the means of statistical model development. Nevertheless, the ex-

perimental results demonstrate that the system is capable of producing modified vowel

sounds through manipulation of the tongue height positions. Further, it is also capable

of producing high-quality modified speech sounds in varying articulation efforts, e.g.,

hypo- and hyper-articulations, by avoiding the use of vocoder-based assumptions of

excitation generation, which limits the quality of synthetic speech from conventional

vocoder, as depicted in Fig. 1.3. Future work from this topic includes the modeling

of the vocal-tract shapes [30–34] to make it possible to perform voice conversion by

transformation of the shape of the vocal-tract from the source into that of the target

speaker.

1.3.2 Statistical Voice Conversion with Neural Network Spec-

tral Mapping and WaveNet Vocoder

In the second system, a voice conversion framework based on neural network (NN)

architecture is presented. Specifically, NN-based architectures are used for the statis-

tical spectral mapping model [15] and for the statistical waveform model (WaveNet

vocoder [14, 24]). In this case, as depicted in Fig. 1.2, the system development can be

performed in a more flexible manner, owing to the use of spectral envelope parame-

ters [20, 21] as representations of vocal-tract characteristics, which can be obtained in

a more straightforward manner [13, 22] compared to articulatory data [19]. Further,

the use of data-driven statistical waveform model, i.e., neural vocoder, specifically the

WaveNet vocoder in this work, makes it possible to achieve higher-quality converted

speech, as depicted in Fig. 1.3. Though, still, there exists mismatches between the

spectral and the waveform model [25]. Hence, there is a need to use a postprocess-

ing method for obtaining refined converted spectral envelope parameters to be used
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in generating the converted speech waveform. In the experimental evaluation, it has

been demonstrated that the NN-based voice conversion framework is capable of achiev-

ing higher quality and speaker-similarity of converted speech in cross-gender conver-

sions compared to conventional system with vocoder-based generation procedure and

of achieving higher speaker-similarity in same-gender conversions compared to conven-

tional system that avoids the use of vocoder-based excitation generation assumptions.

Future work from this topic includes the handling of mismatches by performing fine-

tuning of neural vocoder to achieve higher-quality output and the development of more

flexible system with nonparallel (unpaired) data between source and target speakers.

1.3.3 Voice Conversion with Cyclic Recurrent Neural Net-

work and Finely Tuned WaveNet Vocoder

In the third system, a framework to improve the NN-based voice conversion by per-

forming fine-tuning of WaveNet vocoder is elaborated. In the development of WaveNet

vocoder, the natural spectral parameters are used as conditioning features as depicted

in Fig. 1.4. However, in the conversion phase, the converted spectra from source speaker

is used to generate the converted speech, hence, the mismatches between spectral and

waveform modeling occur, which degrade the converted speech quality. Thanks to

the data-driven approach of WaveNet vocoder, it is possible to directly address these

mismatches by fine-tuning a pretrained model with the estimated spectra of target

speaker [35]. Though, as will be explained in more detail in the next chapter, it is not

straightforward to obtain the estimated (oversmoothed) target spectra for fine-tuning,

owing to the temporal differences between source and target speakers. This framework

is developed to address these issues by utilization of cyclic recurrent neural network

(CycleRNN) architecture for spectral mapping model [36], which can estimate both
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of the converted source-to-target spectra (from conversion flow) and the appraisal of

oversmoothed target spectra (from cyclic flow). The experimental results demonstrate

the effectiveness of the WaveNet fine-tuning using oversmoothed target spectra from

cyclic flow in voice conversion with its significant improvements in both of quality and

speaker-similarity of converted speech compared to the previous best voice conversion

framework that utilizes postprocessing method for alleviating the mismatches issue be-

tween spectral and waveform models. Future work from this topic includes the use of

neural vocoder fine-tuning in nonparallel spectral modeling system and the possibility

of joint optimization between spectral and waveform models.

1.3.4 Non-Parallel Voice Conversion with Cyclic Variational

Autoencoder

In the fourth system, a framework for the development of nonparallel spectral map-

ping modeling is presented. In previous spectral modeling systems, parallel speech

dataset between source and target speakers is used, where they utter a same set of

utterances, as depicted in Fig. 1.5. However, to enable a more flexible voice conver-

sion development, it is necessary to employ the use of nonparallel spectral mapping

model [28, 29], where the model optimization does not rely on the paired utterances

between source and target speakers, e.g., speaking in different languages or different

sets of utterances, which is more suitable for practical situations. In order to achieve

that, in this framework, a nonparallel spectral mapping technique based on varia-

tional autoencoder (VAE) [37] is employed. As will be explained in more detail in

the next chapter, a VAE-based VC [38] utilizes a latent feature space for capturing the

shared representations between speakers, e.g., phonetics, while positioning the speaker-

dependent characteristics with the use of speaker-coding features. The VAE-based VC
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is optimized by reconstruction losses of the spectral features and the regularization

terms of the latent space. The performance of conventional VAE-based VC is sig-

nificantly degraded due to the inability of using converted spectral features in model

optimization. In this sytem, improvement is made by introducing cyclic flow (Cycle-

VAE) [36], which makes it possible to recycle the converted spectral features back into

the system, which can be optimized as the cyclic reconstructed spectra. The exper-

imental results demonstrate that the CycleVAE-based VC significantly improves the

quality and speaker-similarity of converted speech. Future work of this topic includes

many-to-many VC, cross-language VC, and fine-tuning of neural vocoder for ultimate

high-quality and flexible VC.

1.4 Thesis Overview

In summary, the relation of the aforementioned techniques with each chapter in this

thesis to achieve high-quality and flexible voice conversion is given in Table 1.1. Hence,

this thesis is organized as follows. In Chapter 2, related works on the speech and articu-

latory modeling, voice conversion, spectral mapping modeling and waveform modeling

are presented. In Chapter 3, the framework for voice modification with articulatory ma-

nipulation is described to investigate the flexibility in direct control of speech sounds.

Moreover, in Chapter 3, the use of direct waveform modification technique to avoid

vocoder-based excitation is investigated for high-quality generation of modified speech.

Chapter 4 presents the voice conversion with neural-network-based approach for spec-

tral and waveform modeling, where spectral envelope parameters are used as they are

more flexible to be obtained compared to articulatory data. Further, in the parallel VC

system of Chapter 4, neural vocoder-based waveform generation is used along with the

spectral postprocessing method to improve the quality of converted speech compared
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Table 1.1: A summary of relation of each chapter to the scope of aspect and tech-

niques within this thesis. Wav-mod stands for direct waveform modification. Wav-gen

stands for waveform generation technique (conventional or neural vocoder). FT wav-

gen stands for fine-tuned neural vocoder.

Aspect Technique Chapter 3 Chapter 4 Chapter 5 Chapter 6

Flexibility Control ◦

Parallel ◦ ◦

Nonparallel ◦

High quality Wav-mod ◦ ◦

Wav-gen ◦ ◦ ◦

FT wav-gen ◦

to using conventional speech generation. In Chapter 5, an improvement of the voice

conversion system that utilizes cyclic recurrent neural network (CycleRNN) to han-

dle the mismatches between spectral mapping model and neural vocoder (WaveNet)

is elaborated, where the WaveNet vocoder is fine-tuned by using the spectral features

obtained from the CycleRNN to achieve high quality converted speech. In Chapter 6,

a non-parallel voice conversion system based on cyclic variational autoencoder (Cycle-

VAE) is given for realizing flexible VC system development without any paired data

between speakers. Finally, in Chapter 7, the contributions of this thesis are summarized

and future work is discussed.





2 Related work

2.1 General Overview

This section provides brief descriptions on several related works, which are utilized

within this thesis. These include the following three topics: speech and articulatory

mapping, spectral mapping modeling for voice conversion, and neural network (NN)-

based vocoder (neural vocoder). The inclusion of these related works are conducted

to achieve the goal of this thesis for high-quality and flexible voice conversion with

statistical spectral and waveform modelings.

Specifically, the works on speech and articulatory mapping are utilized to make

it possible in achieving flexible control of the speech signal with the use of intuitive

representations of articulatory parameters. On the other hand, the works on spectral

mapping modeling for voice conversion are utilized to make it possible in transforming

the voice characteristics of a source speaker into that of a target speaker with the use of

spectral envelope parameters that can be obtained in a more straightforward/flexible

manner compared to articulatory data. Finally, the work on neural vocoder is deployed

to definitely achieve high-quality converted speech output, thanks to the data-driven

approach of NN-based architecture, which has significant advantage for improvements

compared to conventional rule-based vocoder speech generation. Several issues that

might arise in their use within this thesis, and possible solutions that are related to

each corresponding topic are also briefly presented within this chapter.
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2.2 Speech and Articulatory Mapping

This section briefly describes related statistical modeling techniques for the acoustic-

to-articulatory (inversion) mapping and the articulatory-to-acoustic (production) map-

ping. In this thesis, the usage of articulatory information makes it possible to per-

form speech modification through manipulation of intermediate articulatory parame-

ters within a sequential inversion and production mapping flows [18], which will be

described in more detail within the next chapter.

2.2.1 Inversion mapping problem

As depicted in the top diagram of Fig. 2.1, the acoustic-to-articulatory (inversion)

mapping is conducted to estimate articulatory representations, such as the positions

of tongue and lips, from an input speech parameterizations, such as spectral envelope

parameters extracted from speech signal. To realize the inversion mapping, several

fundamental approaches based on mathematical functions (rule-based) exist [32, 34,

39, 40]. However, a vast number of approximations need to be considered to do so,

which makes the inverse mapping solution is not straightforward to be implemented in

various situations. Recent works based on statistical data-driven methods [41–49] for

the inversion mapping problem have brought significant improvements in terms of its

accuracy and its flexibility.

This thesis focuses on the use of Gaussian mixture model (GMM)-based technique

[47] for modeling the mapping function from spectral characteristics of the speech signal

onto the articulatory representations. In addition, in this thesis, additional technique is

necessary for manipulating the articulatory representations estimated from the speech

signal. This is because the changing of one articulatory configuration would naturally
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Figure 2.1: Statistical inversion mapping model for acoustic-to-articulatory flow, and

statistical production mapping model for articulatory-to-acoustic flow.

affects the configurations of another. The technique to consider interdimensional corre-

lation of articulatory parameters by utilizing statistical modeling of inversion mapping

in the manipulation procedure [18] will be described within the Chapter 3.

2.2.2 Production mapping problem

On the other hand, conversely to that of the inversion mapping, as depicted in

the bottom diagram of Fig. 2.1, the articulatory-to-acoustic production mapping is

conducted to estimate spectral envelope parameters from input articulatory informa-

tion. The difficulty in the conventional inversion mapping procedures is also faced

with the techniques for realizing the forward/production mapping from vocal tract

configurations to speech signal [30,50]. In a similar way, due to the extensive needs of

approximations within such methods, in this thesis we will focus on the use of statisti-

cal data-driven technique for production mapping, which have been proven to produce

a reliable performance [51–55]. Specifically, the GMM-based articulatory-to-acoustic
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production mapping is used within this thesis [55].

In practice, to harness both of the inversion and production mappings, in this thesis,

a sequential inversion and production mappings flow is adopted. This would make it

possible to perform speech modification by manipulating the intermediate articulatory

representations. Moreover, in order to be able to produce high-quality modified speech

output, a technique that avoids the use of vocoder-based excitation generation assump-

tions [18], in a similar way as within the next section, is deployed. The detail of its

implementation within the production mapping will be described within the Chapter 3.

2.2.3 GMM-based Statistical Inversion and Production Map-

ping Methods

Let ct, st, and xt be the spectral envelope parameters, i.e., mel-cepstral coefficients;

the source excitation parameters, i.e., log-scaled F0 and log-scaled waveform power;

and the articulatory parameters at frame t, respectively. The time sequence vectors of

these parameters over an utterance are respectively defined as c = [c⊤1 , . . . , c
⊤
T ]

⊤, s =

[s⊤1 , . . . , s
⊤
T ]

⊤, and x = [x⊤
1 , . . . ,x

⊤
T ]

⊤, where T denotes the number of frames and ⊤

denotes the transposition of the vector. Note that, the procedure of each of the inversion

and production mappings is deliberately described because of their differences in the

employment of respective source and target feature vectors. Mainly, wider contextual

frames are needed in the inversion mapping, while the use of source excitation features

is helpful in the production mapping [16].
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GMM-based Acoustic-to-Articulatory Inversion Mapping

In the inversion mapping, spectral envelope parameters of an input speech signal are

converted into their corresponding articulatory parameters. As the source feature, a

mel-cepstral segment feature vector Ot is used at frame t, which is extracted from the

mel-cepstral parameters ct at multiple frames around the current frame t, as given by

Ot = A[c⊤t−L, . . . , c
⊤
t , . . . , c

⊤
t+L]

⊤ + b, (2.1)

where A and b denote the parameters for the linear transformation, which are cal-

culated beforehand by principal component analysis using the training data. As the

target feature, a joint static and dynamic feature vector of articulatory parameters,

given by X t = [x⊤
t ,∆x

⊤
t ]

⊤, is used at frame t, where ∆xt is the dynamic feature

vector of the articulatory parameters.

In the training procedure of inversion mapping, a joint source and target feature

vector [O⊤
t ,X

⊤
t ]

⊤ is developed at each frame t from all utterances in the training data.

The joint probability density function of the source and target features is then modeled

with a GMM of the inversion mapping as follows:

P (Ot,X t|λ(O,X)) =
M∑

m=1

α(O,X)
m N ([O⊤

t ,X
⊤
t ]

⊤;µ(O,X)
m ,Σ(O,X)

m ), (2.2)

where N (;µ,Σ) denotes the normal distribution with mean µ and covariance Σ. The

parameter set for the GMM of the inversion mapping is denoted as λ(O,X), which

consists of weights α
(O,X)
m , the mean vector µ

(O,X)
m , and the covariance matrix Σ(O,X)

m

of individual mixture components. The mixture component index is m and the total

number of mixture components is M 1. These model parameters are trained with the

expectation-maximization (EM) algorithm. The training scheme for the GMM of the

inversion mapping is shown in the upper diagram of Fig. 2.2.



20 2 Related work

In the conversion procedure, given a time sequence of mel-cepstral segment feature

vectors O = [O⊤
1 , . . . ,O

⊤
T ]

⊤, a time sequence of articulatory feature vectors x is esti-

mated by employing a conditional probability density function, which is analytically

derived from the GMM of the inversion mapping given in Eq. (2.2). In this work,

an approximation of the conditional probability density function is employed with the

use of a single mixture component sequence m = {m1, . . . ,mT} [3], where mt denotes

the mixture component index at frame t. First, a suboptimum mixture component

sequence m̂(O) is determined as

m̂(O) = argmax
m

P (m|O,λ(O,X)). (2.3)

Then, a time sequence of converted articulatory feature vectors x̂ is determined as

follows:

x̂ = argmax
x

P (X|O, m̂(O),λ(O,X)), subject to X =W (x)x, (2.4)

whereW (x) is the linear transformation matrix used to calculate the sequence of joint

static and dynamic articulatory feature vectorsX = [X⊤
1 , . . . ,X

⊤
T ]

⊤ from a sequence of

articulatory feature vectors x. The conversion scheme using the GMM of the inversion

mapping is shown in the upper diagram of Fig. 2.3.

GMM-based Articulatory-to-Acoustic Production Mapping

In the production mapping, articulatory parameters together with source excitation

parameters are converted into their corresponding spectral envelope parameters. As

the source feature, a joint static and dynamic feature vector of articulatory and source

excitation parameters, given by Y t = [x⊤
t , s

⊤
t ,∆x

⊤
t ,∆s

⊤
t ]

⊤, is used at frame t, where

∆st is the dynamic feature vector of the source excitation parameters. As the target

feature, a joint static and dynamic feature vector of mel-cepstral parameters, given by
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Figure 2.2: Training scheme for GMM of the inversion mapping (top) and the produc-

tion mapping (bottom).

Ct = [c⊤t ,∆c
⊤
t ]

⊤, is used at frame t, where ∆ct is the dynamic feature vector of the

mel-cepstral parameters.

In this training procedure, a joint source and target feature vector [Y ⊤
t ,C

⊤
t ]

⊤ is

developed at each frame t. A joint probability density function is then modeled with

a GMM of the production mapping as follows:

P (Y t,Ct|λ(Y,C)) =
M∑

m=1

α(Y,C)
m N ([Y ⊤

t ,C
⊤
t ]

⊤;µ(Y,C)
m ,Σ(Y,C)

m ), (2.5)

where the parameter set for the GMM of the production mapping is denoted as λ(Y,C),

which consists of weights α
(Y,C)
m , the mean vector µ

(Y,C)
m , and the covariance matrix
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Figure 2.3: Conversion scheme using GMM of the inversion mapping (top) and the

production mapping (bottom).

Σ(Y,C)
m of individual mixture components. These model parameters are also trained

with the EM algorithm. The training scheme for the GMM of the production mapping

is shown in the lower diagram of Fig. 2.2.

The conversion procedure for the production mapping is also performed in a similar

way to in the inversion mapping. Given a time sequence of joint static and dynamic

articulatory and source excitation feature vectors Y = [Y ⊤
1 , . . . ,Y

⊤
T ]

⊤, first, the sub-

optimum mixture component sequence m̂(Y ) is determined as

m̂(Y ) = argmax
m

P (m|Y ,λ(Y,C)). (2.6)

Then, a time sequence of converted mel-cepstral feature vectors ĉ is determined as
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follows:

ĉ = argmax
c

P (C|Y , m̂(Y ),λ(Y,C)), subject to C =W (c)c, (2.7)

whereW (c) is the linear transformation matrix used to calculate the sequence of joint

static and dynamic mel-cepstral feature vectors C = [C⊤
1 , . . . ,C

⊤
T ]

⊤ from a sequence

of mel-cepstral feature vectors c. The conversion scheme using the GMM of the pro-

duction mapping is shown in the lower diagram of Fig. 2.3.

2.3 Voice Conversion

Voice conversion [1,56] is a framework for transforming the speech characteristics of a

source speaker into a particular target speaker while preserving the linguistic contents of

the speech signal. A voice conversion system can be used in many speech applications,

such as for augmenting speech database with various voice characteristics [1, 57], for

singing voice conversion [4, 58], for recovery of impaired speech signal [5, 6, 59], for

expressive speech synthesis [7,8], and for body-conducted speech processing [9,10,60].

Owing to its versatility in the development various speech applications, this thesis

is written for achieving high-quality and flexible voice conversion, which would be

beneficial in research and daily-life applications.

In previous section, related works on speech-articulatory mappings have been pre-

sented, which may prove useful for voice conversion if the modeling of vocal-tract shape

can be realized. However, it is not straightforward to obtain articulatory data compared

to spectral envelope parameters that can be extracted in a more flexible manner from

a speech signal. In order to provide a flexible procedure in the development of voice

conversion, statistical mapping modeling techniques for spectral envelope parameters

are more emphasized within this thesis. Related to that, within this section, an inher-
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ent problem of parallel and nonparallel spectral mapping modeling is discussed, where

ultimate flexibility of voice conversion development can be achieved with nonparallel

modeling. In addition, several issues related to the problem of oversmoothing of gener-

ated spectral parameters and the degradation of speech quality using the conventional

synthesis procedure are briefly discussed.

2.3.1 Spectral mapping problem of parallel and non-parallel

speech data

To develop a voice conversion system, the main problem is located on the realization

of a mapping function for the spectral characteristics, such as vocal tract spectrum, of

the source speaker into that of the target speaker. One of the most convenient way to

do so is through applying the use of data-driven/statistical mapping modeling, such

as codebook-based mapping [1], or GMM-based methods [2, 3]. Recent advancements

in neural network (NN)-based modeling have also proven to be successful in the im-

plementations of voice conversion [61–63]. This thesis focuses on the use of NN-based

architecture, such as conventional deep neural network (DNN), deep mixture density

network (DMDN), or recurrent neural network (RNN), for the development of spectral

mapping modeling. In particular, the use of DNN- and DMDN-based spectral mapping

modeling techniques [15] are given in Chapter 4. On the other hand, to properly achieve

high-quality converted speech output with fine-tuning of neural vocoder (briefly men-

tioned within the next section), a cyclic structure of RNN (CycleRNN)-based spectral

mapping modeling [26,36] is presented in Chapter 5.

Nevertheless, most of the aforementioned spectral mapping techniques still use par-

allel speech data of source and target speakers, i.e., they utter a same set of sentences.

Hence, pairing alignment can be obtained in the development of statistical mapping
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Figure 2.4: Possibility of nonparallel spectral modeling by means of latent space utiliza-

tion to capture shared traits between speaker (speaker-independent), such as phonetics,

which will be disentangled from the speaker-dependent traits, such as voice-timbre.

models. However, obtaining such parallel speech dataset requires significant resources,

and in most of the time non-parallel speech dataset, i.e., source and target speakers

utter different sets of sentences, would certainly be more available. Moreover, it is

also not possible to obtain parallel data for sentences in different languages. Related

to this issue, several related works on non-parallel spectral modeling exist to realize

non-parallel voice conversion, such as restricted Boltzmann machine [64], generative

adversarial network [27, 28], and variational autoencoder (VAE) [38]. This thesis will

focus on the improvement of VAE-based VC for the development of non-parallel voice

conversion, owing to its utilization of latent space for capturing shared representations

between source and target speakers, as illustrated in Fig. 2.4. Specifically, in the Chap-

ter 6, a cyclic structure of VAE (CycleVAE) is presented which tackles the problem of

its performance degradation by inclusion of converted spectral features in the training

phase through the cyclic flow [29].
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Parallel conversion model with deep neural network (DNN)

Let xt = [xt(1), xt(2), . . . , xt(D)]⊤ and yt = [yt(1), yt(2), . . . , yt(D)]⊤ be the D-

dimensional spectral feature vector of the source speaker and that of the target speaker

at frame t, respectively. The 2D-dimensional joint static-delta feature vector of the

source and that of the target are then respectively denoted as X t = [xt,∆xt]
⊤ and

Y t = [yt,∆yt]
⊤ at frame t, where the delta feature vectors are denoted as ∆xt and

∆yt.

In the conventional DNN architecture, given an input source spectral feature vector

X t and the network parameters λ, a conditional probability distribution function (pdf)

of the target spectral feature vector Y t on the network output layer is defined as follows:

Ps(Y t|X t,λ) = N (Y t; fλ(X t),D), (2.8)

where N (·;µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. In

the above pdf, the network output is denoted as fλ(X t) and the diagonal covariance

matrix of the target spectral feature vector is denoted as D, which is inferred from

training data. The DNN spectral conversion model is represented by the left graph in

Fig. 4.1.

In the training phase, a set of updated network parameters λ̂ is estimated by back-

propagating the following loss function:

λ̂ = argmin
λ

−P (Y |X,λ), (2.9)

where

P (Y |X,λ) =
T∏
t=1

Ps(Y t|X t,λ). (2.10)

The spectral feature vector sequence of the source speaker and that of the target speaker

are denoted as X = [X⊤
1 ,X

⊤
2 , . . . ,X

⊤
T ]

⊤ and Y = [Y ⊤
1 ,Y

⊤
2 , . . . ,Y

⊤
T ]

⊤, respectively.
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Note that in the training phase, a dynamic time warping (DTW) procedure is per-

formed by aligning the length of the source spectral feature vector sequence with that

of the target one to obtain a pair of time-aligned features.

In the conversion phase, given the source spectral feature vector sequence X, the

trajectory of the target spectral parameters ŷ = [y⊤
1 ,y

⊤
2 , . . . ,y

⊤
T ]

⊤ is computed by the

maximum likelihood parameter generation (MLPG) [65] procedure as follows:

ŷ = (W⊤U−1W )−1W⊤U−1M , (2.11)

where W is a transformation matrix used to expand a static feature vector sequence

into its joint static-delta feature vector sequence. The sequence of target mean vectors is

denoted asM = [fλ(X1)
⊤, fλ(X2)

⊤, . . . , fλ(XT )
⊤]⊤, whereas the sequence of diagonal

covariance matrices is denoted as U =D⊗I2D×T with ⊗ denoting the Kronecker delta

product.

Non-parallel conversion model using VAE-based VC

LetX t = [e
(x)⊤

t , s
(x)⊤

t ]⊤, e
(x)
t = [e

(x)
t (1), . . . , e

(x)
t (De)]

⊤, and s
(x)
t = [s

(x)
t (1), . . . , s

(x)
t (Ds)]

⊤

be theDe+Ds, De, andDs-dimensional feature vectors of the input, the excitation, and

the spectra, respectively, at frame t. In the training phase, given a set of network pa-

rameters {θ,ϕ}, a sequence of input features X = [X⊤
1 , . . . ,X

⊤
T ]

⊤ and time-invariant

Dc-dimensional source speaker-code features c(x) [38], a set of updated network param-

eters {θ̂, ϕ̂} is estimated by maximizing the variational lower bound function [37] as

follows:

{θ̂, ϕ̂} = argmax
θ,ϕ

T∑
t=1

L(θ,ϕ,X t, c
(x)), (2.12)
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where

L(θ,ϕ,X t, c
(x)) = −DKL(qϕ(zt|X t)||pθ(zt))

+ Eqϕ(zt|Xt)
[log pθ(s

(x)
t |zt, c(x))], (2.13)

qϕ(zt|X t) = N (zt; f
(µ)
ϕ (X t), diag(f

(σ)
ϕ (X t)

2)), (2.14)

pθ(s
(x)
t |zt, c(x)) ≈ N (s

(x)
t ; gθ(ẑ

(x)
t , c(x)), I), (2.15)

ẑ
(x)
t = f

(µ)
ϕ (X t) + f

(σ)
ϕ (X t)⊙ ϵ s. t. ϵ ∼ N (0, I). (2.16)

zt denotes a Dz-dimensional latent feature vector, fϕ(·) denotes an encoder network,

gθ(·) denotes a decoder network, ⊙ denotes an element-wise product, and N (;µ,Σ) is

for a Gaussian distribution with mean vector µ and covariance matrix Σ.

Therefore, the reconstructed source spectra feature vector ŝ
(x)
t , i.e., estimated spectra

with the same speaker characteristics as the input source speaker, is given by

ŝ
(x)
t = gθ(ẑ

(x)
t , c(x)). (2.17)

On the other hand, the converted source-to-target spectra ŝ
(y|x)
t , i.e., estimated spectra

with the voice characteristics of a desired target speaker, is given by

ŝ
(y|x)
t = gθ(ẑ

(x)
t , c(y)), (2.18)

where c(y) denotes the time-invariant Dc-dimensional target speaker-code features [38].

In this work, not only source speakers, but also target speakers are used as input

in training. In order to use the corresponding target speaker as the input speaker,

i.e., optimization of reconstructed target spectra and/or performing target-to-source

conversion, the notations of x and y, in Eqs. (2.12)–(2.18), are swapped with each

other. Though, the performance of VAE-based VC is noticeably insufficient because

the converted features are not considered in the parameter optimization.
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2.3.2 Oversmoothing problem of spectral trajectory and global

variance postfilter solution

It is well known that the maximum likelihood (ML)-based optimization in a statis-

tical modeling would cause oversmoothing problem in the parameter estimation. This

oversmoothing problem is shown by the lack of variance structure within the trajec-

tory of the estimated spectral parameters in a voice conversion system [3]. The lack of

detailed structure in the spectral trajectory would cause speech quality degradation,

where the sounds of the speech tends to be muffled. In order to alleviate this prob-

lem, a global variance (GV) postfilter solution has been proposed in [3], which can

take into account the variance of the natural spectral trajectory of the training data

to enhance the detailed structure of the estimated spectral trajectory. Such method

has been proven to significantly improve the quality of the converted speech waveform.

However, due to the use of vocoder-based excitation generation for generating the syn-

thetic speech, such as in [13,22], the quality of the converted speech is still limited. Two

possible approaches can be adopted to address the issue of quality limitation. First

is the by avoiding the use of vocoder-based excitation generation assumptions with

direct waveform modification as briefly explained within the next subsecion. Second is

by the use of neural vocoder to ultimately achieve higher-quality of converted speech

in a data-driven manner as will be explained within the next section. Nevertheless, the

global variance postfilter is still useful for adopting a straightforward method in alle-

viating the quality degradation, which is also used in the voice conversion framework

elaborated in Chapter 4.
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GV postfiltering procedure for converted spectra

Given a converted spectral trajectory ŷ, the GV [3] postprocessed spectra ŷ′ is

calculated as follows:

ŷ′t(d) = β

(√
µv(d)

v(d)
(ŷt(d)− ŷ(d)) + ŷ(d)

)
+ (1− β)ŷt(d), (2.19)

where the GV of the d-th dimension of the target spectral trajectory, computed be-

forehand using whole training data, is given by

µv(d) =
1

T

T∑
t=1

(yt(d)− y(d))2, (2.20)

the mean of target spectral trajectory is computed as

y(d) =
1

T

T∑
t=1

yt(d), (2.21)

and β denotes the weighting coefficient. The GV of converted spectral trajectory

v = [v(1), . . . , v(D)]⊤ is also computed beforehand, with respect to the training data,

in a similar manner as in Eq. (2.20), whereas the mean of converted spectral trajectory

ŷ = [ŷ(1), . . . , ŷ(D)]⊤ is computed with respect to the testing source utterance that

is to be converted. Hence, the oversmoothing of converted spectral trajectory can be

alleviated by enlarging the movements of the spectral trajectory to match the GV

statistics of the target.

2.3.3 Overcoming speech quality degradation through direct

waveform modification

As has been mentioned beforehand, the use of vocoder-based excitation generation

assumptions causes significant quality degradations in a voice conversion system [4]. In
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Figure 2.5: Direct waveform modification with differential spectrum in voice conversion

to avoid the use of vocoder-based excitation generation.

order to alleviate this problem, a direct waveform modification method that avoids the

use of vocoder-based excitation generation has been proposed [4]. Specifically, as illus-

trated in Fig. 2.5, this technique employs the use of spectrum differential parameters

that are computed by taking the differences between the converted spectral parame-

ters and the natural input spectral parameters. The resulting parameter coefficients are

used to directly filter the input speech waveform signal to produce a modified speech

waveform that would have higher-quality compared to using conventional vocoder-

based excitation generation [13, 22]. In this thesis, this direct waveform modification

method is also employed to improve the quality of the modified speech signal within

the framework of the voice modification with articulatory mapping and manipulation,

as in Chapter 3. However, in a practical voice conversion framework, the conversion of

excitation features, such as fundamental frequency, might still be needed for example in

cross-gender conversions (female-to-male speakers or male-to-female speakers). In such



32 2 Related work

a case, it is not straightforward to employ the direct waveform modification method.

Hence, this technique serves more as a way to perform postprocessing [15] to obtain

refined spectral parameters to be used for a neural vocoder in voice conversion as in

Chapter 4. Definite quality improvement will be achieved with fine-tuning procedure

of neural vocoder instead of direct waveform modification as described within the next

section an as used in Chapter 5.

Direct waveform modification procedure

The direct waveform modification technique [4] utilizes the MLSA filter [20], on which

its synthesis function for a waveform signal of the source speaker x = [x1, . . . , xT ]
⊤ is

as follows:

X(z) = H
(x)
t (z)E(z), (2.22)

where E(z) is the transfer function of the excitation signal, and the filter transfer

function H
(x)
t (z) is defined as

H
(x)
t (z) = exp

M∑
m=0

c
(x)
α,t [m]z−m

α , (2.23)

where the all-pass filter z−m
α is given by

z−m
α =

z−m − α

1− αz−m
. (2.24)

α denotes the frequency warping parameter, c
(x)
α,t [m] denotes the m-th mel-cepstrum

coefficient of the mel-cepstrum feature vector cα,t = [c
(x)
α,t [1], . . . , c

(x)
α,t [M ]]⊤ at time t,

and the number of mel-cepstrum coefficients is M .

By retaining the excitation signal of the source speaker, the synthesis function of the

waveform signal of the target speaker y = [y1, . . . , yT ]
⊤ can be defined in a similar way
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as in Eq. (2.22) as follows:

Y (z) =
H

(y)
t (z)

H
(x)
t (z)

X(z), (2.25)

because

E(z) =
X(z)

H
(x)
t (z)

, (2.26)

and

Y (z) ≃ H
(y)
t (z)E(z). (2.27)

Hence, given the m-th mel-cepstrum differential dα,t[m] that is computed as

dα,t[m] = c
(y)
α,t[m]− c

(x)
α,t [m], (2.28)

the transfer function of the differential filter H
(y/x)
t (z) is given by

H
(y/x)
t (z) =

H
(y)
t (z)

H
(x)
t (z)

= exp
M∑

m=0

dα,t[m]z−m
α , (2.29)

because of by following Eq. (2.23)

H
(y)
t (z)

H
(x)
t (z)

=
exp

∑M
m=0 c

(y)
α,t[m]z−m

α

exp
∑M

m=0 c
(x)
α,t [m]z−m

α

. (2.30)

2.4 Neural Vocoder

Recently, the development of NN-based architectures for the modeling of speech

signal waveform, i.e., neural vocoder, has been growing rapidly. This includes the

emergence of Wavenet [14,23], SampleRNN [66,67], WaveRNN [68,69], FFTNet [70,71],

LPCNet [72,73], parallel WaveNet [74,75], WaveGlow [76], and neural-source-filter [77].

The capability of neural vocoder frameworks to generate high-quality synthetic speech
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has been proven, and has surpassed that of the conventional rule-based vocoder. Fur-

ther, thanks to the data-driven concept, a neural vocoder can be additionally adapted

(fine-tuned) to accomodate the condition of distorted speech features, such as spectral

parameters estimated from a spectral mapping modeling. Hence, in order to achieve

high-quality converted speech output in voice conversion, in this thesis, the autoregres-

sive WaveNet vocoder [14, 23] will be used and briefly discussed within this section to

elaborate its possible limitation, owing to its use in voice conversion.

2.4.1 AutoregressiveWaveNet vocoder for achieving high-quality

synthetic speech and its possible limitation

WaveNet consists of a stack of dilated causal convolutional layers with residual blocks

that can effectively models the long-term causal relationship of the speech waveform

samples [14]. A WaveNet vocoder is capable of generating meaningful speech waveform

signal by conditioning the network to a set of speech parameters, such as spectral

and excitation features [23]. In the synthesis time, the speech waveform is generated

sample-by-sample, i.e., in an autoregressive manner. A well trained WaveNet vocoder

is able to generate high-quality synthetic speech that is indistinguishable from a natural

speech. However, when it is used in voice conversion, there exist mismatches between

the estimated speech features, such as converted spectral parameters, and the natural

speech features used in the WaveNet training. In this thesis, this problem is solved

by means of either a postprocessing method for the converted spectral features or by

directly addressing the mismatches problem through fine-tuning the WaveNet vocoder.

The first approach to address the limitation of WaveNet vocoder in voice conversion,

i.e., the mismatches between spectral and waveform modeling, is to use a postprocessing

method based on direct waveform modification [15], which has been briefly explained
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Figure 2.6: Problem of neural vocoder fine-tuning in voice conversion due to the differ-

ences in temporal structure between source speaker and target speaker.

in the previous section. This technique will be further elaborated in the usage of a

voice conversion in Chapter 4. Secondly, to directly address the mismatches within

the WaveNet vocoder, instead of using a spectral postprocessing method, a fine-tuning

procedure for WaveNet vocoder in voice conversion will be utilized [35, 36]. As illus-

trated in Fig. 2.6, it is not straightforward to perform fine-tuning of a neural vocoder in

voice conversion using converted spectral features, owing to the differences of temporal

structure between source and target speakers. This limitation/problem is addressed

through the use of a cyclic structure of recurrent neural network (CycleRNN) for spec-

tral mapping modeling that can estimate oversmoothed target spectra with the same

temporal structures as the target speech [36]. This technique, which makes it possible

to achieve high-quality voice conversion will be described in more detail in Chapter 5.
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Figure 2.7: Architecture of the WaveNet vocoder using dilated causal convolution within

layers of residual blocks.

2.4.2 WaveNet Vocoder

WaveNet [14], as illustrated in Fig. 2.7, is a deep AR waveform generation network

that is capable of efficiently modeling waveform samples based on their corresponding

previous samples through the use of a stack of dilated convolutional layers. When it is

conditioned with auxiliary speech parameters [23, 24], such as spectral and excitation

features, a well-developed WaveNet vocoder is capable of producing meaningful speech

waveform signals with natural quality. Given a sequence of speech waveform samples

s = [s1, s2, . . . , st, . . . , sT ]
⊤, the likelihood function of the WaveNet vocoder is defined

as

P (s|h,θ) =
T∏
t=1

P (st|st−p,h
′
t,θ), (2.31)

where h denotes a sequence of auxiliary feature vectors and h′
t is the upsampled auxil-

iary feature vector at time t. For a waveform sample st at time t, the sequence of its p

previous samples is denoted as st−p. The set of WaveNet parameters is denoted as θ.

Details of the WaveNet architecture, as illustrated in Fig. 2.7, are as follows. An
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input sequence of auxiliary speech feature vectors is fed through convolutional input

layers, which are the same as those used for the RNN-based spectral mapping, described

in Section 5.2. Then, a trainable upsampling layer is used to match the resolution of

the speech parameters to that of the speech waveform samples. On the other hand,

the waveform samples are first discretized into 256 categorical values using the µ-law

algorithm, which gives a 256-dimensional one-hot vector for each time t. The sample

feature vectors are then processed through a causal (2 × 1) convolutional input layer.

Following these preprocessing steps, both the sample feature vectors and the auxiliary

feature vectors are fed through a stack of dilated convolutional layers with residual

blocks. Specifically, for each residual block, a 2 × 1 convolution layer with double

the dilation size of the residual block one step deeper is used to process the sample

feature vectors. The sequence of doubled dilation sizes is repeated several times, in

other words, after the end of the doubled dilation sequence, the sequence starts again

from 1. On the other hand, a 1 × 1 convolution layer is used to process the auxiliary

feature vectors. For the kth residual block at time t, the output of the 2×1 convolution

s̃t,k and that of the 1× 1 convolution h̃′
t,k are fed to a gating function to produce the

output of the residual block as follows:

σ(W f,ks̃t,k + V f,kh̃
′
t,k)⊙ tanh(W g,ks̃t,k + V g,kh̃

′
t,k), (2.32)

where ⊙ denotes the elementwise product, f and g denote the filter and gate, respec-

tively, and the corresponding convolution parameters are denoted by W and V . The

output of the residual block is then passed to both a skip layer connection and the

next residual block. The collection of output feature vectors from the skip connections

are summed and fed to the final output layers, which employ the softmax function

to treat the WaveNet optimization as a classification problem, i.e., with cross-entropy

loss. During the generation of a speech waveform signal, a sampling procedure is sim-
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ply performed using the softmax distribution to estimate the speech waveform sample

by sample.

2.4.3 Collapsed Waveform Detection

The WaveNet-based vocoder is capable of generating much more natural-sounding

waveforms than a conventional vocoder. However, sometimes the converted waveform

generated by the WaveNet vocoder incorporates collapsed segments. In VC, this is

most likely caused by the mismatch between the converted auxiliary features and the

original features used in training the model.

In [78], a power-based detector is employed to automatically detect collapsed seg-

ments in WaveNet-generated waveforms. From the spectrum of a generated waveform,

frame-based summation is performed using the power spectrum of all frequency bins

P and that of the Nyquist frequency components L. Let P (W ) = [P
(W )
1 , . . . , P

(W )
T ] and

P (C) = [P
(C)
1 , . . . , P

(C)
T ] denote the power summation sequence from all frequency bins

of a WaveNet-generated waveform and that of a conventional vocoder, respectively.

The power summation sequences from the Nyquist frequency components are respec-

tively denoted as L(W ) = [L
(W )
1 , . . . , L

(W )
T ] and L(C) = [L

(C)
1 , . . . , L

(C)
T ]. In the detection,

the differences in the maximum power between the WaveNet-generated waveform and

that generated the conventional vocoder are computed as follows:

∆P = max(P (W ))−max(P (C)) (2.33)

∆L = max(L(W ))−max(L(C)). (2.34)

The system selects the best waveform generation flow through the comparison of ∆P

and ∆L with an empirical threshold, where both values will be higher than the thresh-

old for a low-quality waveform.
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Figure 2.8: Relation with thesis scope to achieve high-quality and flexible voice conver-

sion system.

2.5 Relations with Thesis Scope for High-Quality

and Flexible Voice Conversion

In this thesis, to comprehensively study the development of high-quality and flexi-

ble voice conversion with statistical spectral and waveform modeling techniques, the

aforementioned related works are utilized throughout this work.

In the first part, a voice modification system is realized by the use of mapping ap-

proach between physical configurations of the vocal tract (articulators) and speech

signal. The so-called articulatory controllable speech modification system integrates

the GMM-based inversion and production mappings in a sequential manner while al-

lowing the manipulation of intuitive representations of articulatory positions, such as

to modify phonemic sounds or to modify the articulation effort. High-quality mod-
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ified speech signal can also be synthesized by harnessing the use of direct waveform

modification technique that avoids the use of vocoder-based excitation generation as-

sumptions (direct waveform modification). As illustrated in Fig. 2.8, such framework

would provide a flexible way for directly controlling the speech signal, thanks to the use

of intuitive articulatory representations. However, obtaining articulatory data for flexi-

ble statistical model development is not straightforward, and more advanced technique

is needed to fully model the vocal-tract shape for achieving voice conversion procedure

with physical-based representations.

In the second part, the voice conversion framework is realized by implementing the

mapping function of spectral envelope parameters between that of the source and

that of the target speakers with the use of neural-network (NN)-based architectures.

Further, to improve the quality of the converted speech waveform, statistical waveform

modeling, i.e., neural vocoder, is deployed, specifically, the WaveNet vocoder. To

address the mismatches that exist between the estimated spectral parameters from the

spectral mapping model and the trained WaveNet vocoder, a postprocessing method

based on the signal processing technique on direct waveform modification is employed.

As depicted in Fig. 2.8, the use of statistical spectral mapping modeling, particularly

for spectral envelope parameters, allows more flexible approach in system development

compared to using articulatory data.

In this thesis, to facilitate further improvement of voice conversion framework with

neural vocoder, a fine-tuning approach that directly deals the mismatches of the spec-

tral parameters between spectral mapping model and WaveNet vocoder is fully elab-

orated. The fine-tuning approach is based on a cyclic structure of RNN (CycleRNN)

spectral mapping model that can estimate the oversmoothed spectral parameters to

be used in the fine-tuning of a WaveNet vocoder. Finally, the problem of non-parallel
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spectral modeling in a voice conversion framework is also tackled within this thesis

with the use of variational autoencoder (VAE)-based VC system, which uses a regu-

larized latent space for the shared/common representations between different speakers.

Specifically, in this work, a cyclic framework of VAE (CycleVAE) is presented which is

capable of taking into account the converted spectral parameters in the optimization of

the network, where, in the conventional VAE, it can only uses reconstruction aspect of

the spectral features. As also depicted in Fig. 2.8, the use of neural vocoder, especially

with fine-tuning procedure makes it possible to achieve high-quality converted speech

output within the voice conversion framework. Moreover, improvements of nonpar-

allel spectral modeling will ultimately allows a flexible voice conversion development

procedure, where arbitrary speech dataset can be used between different speakers.





3 Statistical Voice Modification

with Articulatory Mapping and

Manipulation

3.1 Introduction

During speech production, both of the vocal folds and the articulators are used

to achieve the so-called source-filter combination in the generation of speech signals

[11, 12]. To accomplish this, the air pressure must be increased in the lungs. Then,

the corresponding air flow is channeled in the trachea through the vocal folds. A par-

ticular characteristic of the excitation signal is then determined by the configuration

of the vocal folds while the air is flowing, for example, a periodic signal is produced

by constant vibrations of the vocal folds. Subsequently, this source-excitation signal

is modulated within the vocal tract by the articulatory organs, including the tongue,

teeth, and velum. Hence, a certain configuration of articulators appropriately deter-

mines the resonance/filter characteristics of the vocal tract, which, in turn naturally

regulates the traits of the generated phonemic sounds.

This intimate relationship between speech and articulatory organs appears to be

in contrast with their corresponding attributes. While producing speech sounds, the

movements of the articulators in fact vary much more slowly than their counterparts

in the speech signal [34, 79, 80], such as the trajectory of the vocal tract spectrum.



44 3 Statistical Voice Modification with Articulatory Mapping and Manipulation

Undeniably, a broad range of possibilities in the development of speech technologies

would be viable through the utilization of slowly varying articulatory representations,

such as articulatory parameters. Indeed, researchers have been extensively studying

the use of articulatory parameters in speech technologies for several decades. Several

notable comprehensive works have been reported on applications to low-bit-rate speech

coding [40,79], speech analysis and synthesis [79,81,82], speech recognition [19,83,84],

and speech visualization [85,86].

To establish a relationship between speech and vocal tract composition, it is widely

known that the fundamental approach is based on mathematical functions [32, 34, 39,

40]. Unfortunately, the nature of the speech production mechanism itself does not pro-

vide a straightforward procedure for doing this. This is shown by the fact that there is

no one-to-one mapping between speech signals and configurations of articulators. Such

a peculiarity is observed in the so-called inverse mapping from acoustic to articulatory

parameters [31, 33] as well as in the forward/production mapping from articulatory

configurations to the vocal tract spectrum [30, 50]. A vast number of approximations

must be considered when examining the affiliation between speech and articulators.

Recently, researchers have considered the use of statistical approaches. This has been

made possible by the availability in parallel recording data of speech and articulatory

movements [87–90]. Indeed, the elegance of capturing statistical traits within the acces-

sible data has led to many notable works on the advancement of statistical data-driven

methods for both acoustic-to-articulatory inversion and articulatory-to-acoustic pro-

duction mappings. The statistical approach for the acoustic-to-articulatory inversion

mapping was first introduced with the use of a codebook-based method [41]. Later,

in [42], it was reported that by incorporating a constraint on the articulation dynamics,

an improvement in the accuracy of inversion mapping can be achieved. The utilization
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of a neural-network method in inversion mapping was reported in [43, 44]; in [44], it

was found that by employing multiple mixtures to model the density of articulatory

features, significant improvement in the estimation accuracy can be obtained. Then,

in [45,46], phonetic information was used to improve the mapping effectiveness. Mean-

while, in [47], a Gaussian mixture model (GMM)-based mapping approach was shown

to be capable of preserving the effectiveness while allowing independence from textual

input features. For the articulatory-to-acoustic production mapping, the progress can

be described in a similar manner to that for the inversion mapping, where it was first

used with a codebook-based method in [51]. In [52,53], production mapping based on

a neural network was reported, and phonetic information was shown to enhance the

production mapping performance in [54]. Similarly to above, a GMM-based production

mapping was reported to perform effectively in [55].

In this work, the GMM-based statistical method for both the acoustic-to-articulatory

inversion and articulatory-to-acoustic production mappings [16] is used, where the

GMM concept itself is widely used in voice conversion systems [2]. The GMM-based

statistical feature mapping technique essentially has three notable advantages. First, it

provides non-black-box procedures in both modeling and estimation mechanisms with

low resources. Second, it allows the possibility of developing language-independent

systems owing to its independence of textual input features. Third, its low computa-

tional complexity opens a wide range of possibilities for implementation, particularly

for real-time processing. Thus, in this work, to maximize the potential of GMM-based

inversion and production mappings, an attempt to utilize the close relationship be-

tween speech sounds and articulatory movements has to be made. One effective means

of achieving this is by developing a system capable of producing modified speech sounds

through adjustments of unobserved articulatory features, which is closely related to a
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system using an HMM-based technique [17]. A system that is capable of performing

the aforementioned scheme will offer immense opportunities in the development of var-

ious speech applications, such as acoustic and/or articulatory visualization feedback

for speech therapy [91,92], language learning/pronunciation training [93,94].

To make it possible to take advantage of the use of articulatory parameters in the

above speech applications, in this chapter, a voice modification system with articu-

latory manipulation that employs the GMM-based statistical inversion and produc-

tion mappings is presented. This system allows one to modify an input speech signal

through manipulation of the unobserved articulatory movements. In a more advanced

development to adjust for various speech applications, one can conveniently adapt the

manipulation of articulatory parameters for different procedures. Further, for the use

in a voice conversion system, articulatory parameters have to be utilized for the es-

timation and mapping of the physical vocal-tract shape between the source and the

target speakers. In this system, however, an integration of the statistical inversion and

production mappings is performed into a single sequential mapping procedure, which

allows one to adjust the unobserved articulatory parameters. These unobserved move-

ments of the articulators can be conveniently modified with an advanced manipulation

procedure, which considers the intercorrelation between articulatory parameters [95].

Additionally, high-quality modified speech sounds can be generated with the imple-

mentation of direct waveform modification method, capable of avoiding vocoder-based

waveform generation by straightforwardly filtering an input speech signal with spec-

trum differential parameters [96,97]. The experimental evaluation results suggest that

the system makes it possible to produce more accurate spectral parameters, generate

natural trajectories of modified articulatory movements, yield high-quality modified

speech sounds, and control appropriate articulatory configurations for the modification
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of several vowel sounds.

3.2 Acoustic-Articulatory Speech Data

In this work, the Multichannel Articulatory Database (MOCHA) [98] is used as the

acoustic-articulatory data, which is provided by the Centre for Speech Technology Re-

search (CSTR), University of Edinburgh. The MOCHA database consists of speech and

articulatory movement data, which were simultaneously recorded at Queen Margaret

University College. It contains two sets of speaker data from one male speaker (msak0)

and one female speaker (fsew0), with both speakers having a Southern England accent.

There are a total of 460 British TIMIT sentences uttered by each speaker.

The speech data were recorded with a sampling rate of 16 kHz. For the articu-

latory movement data, an electromagnetic articulograph (EMA) device was used to

record the positions of articulators while speaking. The EMA data provide recorded

measurements of seven articulators: the upper lip, lower lip, lower incisor, tongue tip,

tongue body, tongue dorsum, and velum. The locations of the articulators are mea-

sured as x- and y-coordinates in the mid-sagittal plane, where the bridge of the nose

and the upper incisor are chosen as points of reference. The articulatory movement

data were recorded with a sampling rate of 500 kHz. Preprocessing procedures were

performed [16] to reduce the effect of noise from measurement errors and normalize

data values into Z-scores.
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Figure 3.1: Flow of the articulatory controllable speech modification system using the

sequential inversion and production mapping procedure.

3.3 Articulatory Controllable Speech Modification

using GMM-based Models

3.3.1 Sequential Procedure of Inversion and Production Map-

pings

In this work, to harness the use of articulatory parameters, an articulatory control-

lable speech modification system based on a sequential mapping process using both

the GMM of the inversion mapping and that of the production mapping is presented.

These two GMMs are trained by the procedures described in Sections 2.2.3 and 2.2.3,

respectively. By performing a sequence of inversion and production mappings, an input

speech signal can be conveniently modified through manipulation of the unobserved ar-

ticulatory movements. The methods for manipulating the articulatory parameters are

elaborated in Section 3.3.2.
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The flow of the sequential mapping is shown in Fig. 3.1. First, given an input

speech signal, its spectral envelope parameters c, i.e., mel-cepstral coefficients, and its

source excitation parameters s, i.e., log-scaled F0 and log-scaled waveform power, are

extracted. Then, the corresponding articulatory parameters x̂ are estimated from the

mel-cepstral segments O by using the GMM of the inversion mapping as described

in Section 2.2.3. To modify the spectral characteristics of the input speech signal,

these estimated articulatory parameters x̂ are manually manipulated to produce a set

of modified articulatory parameters x̂′. Then, the corresponding spectral envelope

parameters ĉ′ are estimated from the joint features Y of the modified articulatory

parameters x̂′ and the source excitation parameters s by using the GMM of the pro-

duction mapping as described in Section 2.2.3. Finally, the modified speech signal is

generated from the modified spectral envelope parameters ĉ′ and the source excitation

parameters s by using a vocoder-based waveform generation procedure.

3.3.2 Methods for Manipulating Articulatory Parameters

To modify the unobserved articulatory movements, two methods for manipulat-

ing the articulatory parameters are presented: a simple manipulation method and a

smoothing method to take into account the intercorrelation of articulatory parameters.

Simple manipulation method

Let x̂t be the estimated articulatory feature vector at frame t. A manipulated

articulatory feature vector x̂′
t is then given by the following linear transformation:

x̂′
t = Λtx̂t +ψt, (3.1)
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Figure 3.2: Flow of the articulatory manipulation procedure that considers the inter-

correlation of articulatory parameters by performing a two-stage inversion mapping.

where the scaling matrix Λt and the shifting vector ψt are respectively written as

Λt = diag [Λt(1), . . . ,Λt(d), . . . ,Λt(Dx)], (3.2)

ψt = [ψt(1), . . . , ψt(d), . . . , ψt(Dx)]
⊤. (3.3)

Through the use of scaling factors in Λt at each frame t, the dilation or contraction of

articulatory movements can be managed since Z-scores are used, i.e., the mean of the

articulatory trajectory is not changed. On the other hand, the positions of individual

articulators can be conveniently altered by using the shifting factors in ψt at each

frame t.



3.3. Articulatory Controllable Speech Modification using GMM-based Models 51

By using the above linear transformation, the unobserved articulatory movements

can be modified by manipulating the parameters of individual articulators with a set

of scaling and shifting factors. However, it is known that these articulators have a

certain degree of correlation between each other [99], for example, the movements of

the tongue tip strongly affect those of the tongue body. Therefore, considering this

fact, the manual manipulation of particular articulators must be compensated by the

other articulators [33] by considering the degree of their correlation. Hence, unnatu-

ral articulatory movements are likely to be generated from this simple manipulation

method.

Manipulation procedure considering intercorrelation of articulatory param-

eters

To generate more natural trajectories of modified articulatory movements, a manipu-

lation procedure that takes into account the intercorrelation of articulatory parameters

is presented. To achieve this, specifically, a scheme that can be called a two-stage inver-

sion mapping strategy is used. In the first stage, a sequence of articulatory parameters

is estimated given the corresponding sequence of mel-cepstral segments. Then, a sim-

ple linear transformation is performed to manipulate these articulatory parameters as

described in Section 3.3.2. In the second stage, the modified components of the artic-

ulatory parameters are appended onto the input mel-cepstral segments. Then, a set

of refined parameters corresponding to the unmodified articulatory components is esti-

mated by utilizing the intercorrelation of articulatory parameters embedded within the

GMM of the inversion mapping. Finally, a set of fully modified articulatory parameters

is constructed from the modified components and the refined unmodified components.

The flow of this manipulation procedure is depicted in Fig. 3.2.
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Let x̂
(d)
t and x̂

(u)
t be the articulatory feature vectors of the modified components and

the unmodified components, respectively, at frame t. Their joint static and dynamic

feature vectors are then respectively given by X̂
(d)
t = [x̂

(d)⊤

t ,∆x̂
(d)⊤

t ]⊤ and X̂
(u)
t =

[x̂
(u)⊤

t ,∆x̂
(u)⊤

t ]⊤ at frame t. Thus, by using the second stage of the inversion mapping,

a sequence of refined unmodified components ˆ̂x(u) can be estimated as follows:

ˆ̂x(u) = argmax
x̂(u)

P
(
X̂(u)|O, X̂(d), m̂(O),λ(O,X)

)
,

subject to X̂(u) =W (x(u))x̂(u), (3.4)

where the suboptimum mixture component sequence m̂(O) is determined by Eq. (2.3).

The transformation matrix used to expand the dynamic features of the unmodified

components is denoted asW (x(u)). The corresponding sequences of articulatory feature

vectors are written as X̂(d) = [X̂
(d)⊤

1 , . . . , X̂
(d)⊤

T ]⊤, X̂(u) = [X̂
(u)⊤

1 , . . . , X̂
(u)⊤

T ]⊤, and

ˆ̂x(u) = [ˆ̂x
(u)⊤

1 , . . . , ˆ̂x
(u)⊤

T ]⊤.

To capture the intercorrelation of articulatory parameters, first, the interdimensional

correlation is taken into account with the use of mixture-dependent full-covariance ma-

trices within the conditional pdf of the inversion mapping. Thus, the modified com-

ponents of the articulatory parameters implicitly govern the change in the unmodified

components through their statistical correspondence. Second, the interframe correla-

tion of articulatory parameters is also considered owing to the use of a trajectory-based

conversion framework [16], which employs an explicit relationship between the static

and dynamic features [65]. Therefore, this manipulation procedure should be capable

of generating natural movements of the articulatory parameters.
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Figure 3.3: Flow of the articulatory controllable speech modification system using direct

waveform modification with spectrum differential parameters to generate a modified

speech waveform.

3.4 Speech Modification without Vocoder-BasedWave-

form Generation

3.4.1 Problem in Terms of Speech Quality

In Section 3.3, the articulatory controllable speech modification system was intro-

duced, where an input speech signal can be conveniently modified through manipula-

tion of the unobserved articulatory movements. In this system, to generate a modified

speech waveform, a vocoder-based framework is employed, where the modified spec-

tral envelope parameters and the source excitation parameters are used to generate

the speech signal. However, it is well known that a vocoder-based procedure tends

to degrade the quality of synthetic speech signals. Combined with its sensitivity to

errors in speech parameterization, vocoder-based waveform generation would lead to a

significant degradation in the quality of the modified speech waveform. In this work,
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to alleviate this problem, several implementations of a direct waveform modification

procedure [96] capable of avoiding the use of a vocoder-based excitation generation

scheme by using spectrum differential parameters to directly filter an input speech

signal are presented. In this case, the spectrum differential parameters refer to the

differences between modified and unmodified spectral envelope parameters. The flow

of the sequential inversion and production mappings using the spectrum differential

parameters is shown in Fig. 3.3.

By implementing a direct waveform modification procedure with spectrum differen-

tial parameters, the quality degradation caused by the use of a vocoder-based excitation

generation process can be alleviated. However, in this framework, considering that the

spectrum differential parameters are computed by using converted parameters, i.e., the

converted spectral envelope parameters of modified speech, the quality of the modi-

fied speech waveform is still not optimized owing to the oversmoothed characteristics

inherited from the trajectory-based conversion process [3]. One way to address the

oversmoothing problem is by taking into account the global variance (GV) [3] and/or

the modulation spectrum (MS) [100]. Nevertheless, the statistics of the GV or MS,

which are obtained from the training data, do not exactly address the issue in new data.

In this work, to exactly address the oversmoothing problem, two other implementations

of a direct waveform modification method that can preserve the fine structure of the

spectral envelope from the input speech waveform are presented.

3.4.2 Implementations of Direct WaveformModification Method

using Spectrum Differential Parameters

In a direct waveform modification method, an input speech signal is modified using

the spectrum differential parameters by utilizing a time-varying synthesis filter, such as
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an MLSA filter [20]. To determine the best way of generating the spectrum differential

parameters, three different methods are presented: a basic method (DiffBM), a refined

method (DiffRM), and a refined method with differential GMM (DiffGMM).

Basic method (DiffBM)

In the basic method of calculating the spectrum differential parameters (DiffBM), ex-

tracted spectral envelope parameters of the input speech waveform and oversmoothed

spectral envelope parameters of the modified speech waveform are employed. Let c

be the time sequence of the spectral envelope parameters extracted from the input

speech waveform and ĉ′ = [ĉ′⊤1 , . . . , ĉ
′⊤
T ]⊤ be that of the oversmoothed spectral enve-

lope parameters for the modified speech waveform. The time sequence of the DiffBM

spectrum differential parameters dBM is then given by

dBM = ĉ′ − c = [[ĉ′1 − c1]⊤, . . . , [ĉ′T − cT ]⊤]⊤. (3.5)

A modified speech waveform is then generated by filtering the input speech waveform

using the dBM spectrum differential parameters. Therefore, the modified speech wave-

form can be characterized by a time sequence of DiffBM spectral envelope parameters

cBM , which is given by

cBM = c+ dBM

= [[c1 + (ĉ′1 − c1)]⊤, . . . , [cT + (ĉ′T − cT )]⊤]⊤

= [ĉ′⊤1 , . . . , ĉ
′⊤
T ]⊤. (3.6)

Thus, the speech waveform modified by this basic method (DiffBM) is represented by a

time sequence of the oversmoothed modified spectral envelope parameters ĉ′. However,

this sequence is completely different from that of the conventional vocoder-based system
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Figure 3.4: Three different flows for the implementation of a direct waveform modifi-

cation procedure in the articulatory controllable speech modification system according

to the calculation scheme for the spectrum differential parameters.

in terms of the excitation signal. This is because the direct filtering procedure of the

input speech waveform avoids the use of vocoder-based excitation generation. The

DiffBM scheme is shown on the left panel in Fig. 3.4.

Refined method to alleviate oversmoothing (DiffRM)

In the refined method for calculating the spectrum differential parameters (DiffRM),

the oversmoothing problem, which still appears in the basic method DiffBM, is alle-

viated by preserving the fine structure of the input speech waveform by employing

oversmoothed spectral envelope parameters of both modified speech and unmodified

speech waveforms. Let ĉ′ be the time sequence of the oversmoothed spectral envelope

parameters of the modified speech waveform and ĉ = [ĉ⊤1 , . . . , ĉ
⊤
T ]

⊤ be that of the

unmodified speech waveform. The time sequence of the DiffRM spectrum differential
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parameters dRM is given by

dRM = ĉ′ − ĉ = [[ĉ′1 − ĉ1]⊤, . . . , [ĉ′T − ĉT ]⊤]⊤, (3.7)

where ĉ is given in Eq. (2.7).

Similarly to in the basic method, the modified speech waveform is generated by

filtering the input speech waveform using the dRM spectrum differential parameters.

Thus, this modified speech waveform can be characterized by a time sequence of DiffRM

spectral envelope parameters cRM , which is given by

cRM = c+ dRM

= [[c1 + (ĉ′1 − ĉ1)]⊤, . . . , [cT + (ĉ′T − ĉT )]⊤]⊤

= [[ĉ′1 + ϵ1]
⊤, . . . , [ĉ′T + ϵT ]

⊤]⊤, (3.8)

where the refining factors are ϵt = c1 − ĉ1 at frame t. Hence, the modified speech

waveform of the refined method (DiffRM) is represented not only by a time sequence

of the oversmoothed modified spectral envelope parameters ĉ′ but also by the residuals

given in a time sequence of the refining factors ϵ = [ϵ⊤1 , . . . , ϵ
⊤
T ]

⊤ to preserve the fine

structure of the spectral envelope. Consequently, the oversmoothed characteristic of

the modified speech waveform is alleviated. The DiffRM scheme is shown in the middle

panel in Fig. 3.4.

Refined method with differential GMM (DiffGMM)

Finally, a method that works in a similar way to in the refined method DiffRM

but in a more sophisticated manner by utilizing a differential GMM (DiffGMM) is

presented. In this method, rather than generating the spectral envelope parameters

twice, as in the DiffRM method, they are generated only once using the differential
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GMM of the production mapping. Let Ŷ ′ = [Ŷ ′⊤
1 , . . . , Ŷ

′⊤
T ]⊤ be the time sequence of

the source excitation parameters and the modified articulatory parameters, and Ŷ =

[Ŷ ⊤
1 , . . . , Ŷ

⊤
T ]

⊤ be that of the unmodified articulatory parameters. At frame t, their

corresponding feature vectors are respectively given by Ŷ ′
t = [x̂′⊤

t , s
⊤
t ,∆x̂

′⊤
t ,∆s

⊤
t ]

⊤ and

Ŷ t = [x̂⊤
t , s

⊤
t ,∆x̂

⊤
t ,∆s

⊤
t ]

⊤. Then, the time sequence of DiffGMM spectrum differential

parameters d̂G is estimated as follows:

d̂G = argmax
dG

P
(
DG|Y ′,Y ,λ(Y,C)

)
,

subject to DG = C ′ −C and DG =W (c)dG. (3.9)

Then, a modified speech waveform of the DiffGMM method is generated by filter-

ing the input speech waveform using the time sequence of the estimated spectrum

differential parameters d̂G = [d̂⊤
G1
, . . . , d̂⊤

GT
]⊤ as follows:

cG = c+ d̂G. (3.10)

Therefore, the corresponding modified speech waveform is characterized by the time

sequence of spectral envelope parameters cG, where the oversmoothed structure has

been alleviated by preserving the fine structure of the input speech waveform because

d̂Gt = ĉ′t − ĉt. However, the procedure is different from that of the refined method

DiffRM because the parameters are only generated once using the differential GMM

of the production mapping. Furthermore, it would also be straightforward to apply

additional techniques, such as GV [101] or MS modeling [100]. The DiffGMM scheme

is shown on the right panel in Fig. 3.4.
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3.5 Experimental Evaluation

3.5.1 Experimental Conditions

The parallel acoustic-articulatory data provided in MOCHA, described in Section 3.2

was used. As the spectral envelope parameters, the first through 24th mel-cepstral co-

efficients converted from the spectral envelope were used, which were extracted frame-

by-frame by STRAIGHT analysis [13]. As the source excitation parameters, log-scaled

F0 values also including an unvoiced/voiced binary decision feature and log-scaled

power values extracted from the STRAIGHT spectrum were used. The fixed-point

analysis [102] in STRAIGHT was used to extract the F0 values. As the articulatory

parameters, 14-dimensional EMA data, elaborated in Section 3.2, were used, which

were converted into Z-scores. The speech data were sampled at 16 kHz. The frame

shift was set to 5 ms. The contextual frame length in Eq. (2.1) was set to ±10 frames.

Both objective and subjective evaluations to assess the performance of the articu-

latory controllable speech modification system were performed. In the objective eval-

uation, first, the accuracy of the inversion mapping, described in Section 2.2.3, was

measured by comparing the estimated articulatory parameters with the measured val-

ues. Then, the accuracy of the production mapping, described in Section 2.2.3, was

measured by comparing the estimated spectral envelope parameters, converted from

the measured articulatory parameters, with the extracted spectral envelope parame-

ters. Finally, the accuracy of the sequential procedure of inversion and production

mappings, described in Section 3.3.1, was measured by comparing the estimated spec-

tral envelope parameters, converted from the estimated articulatory parameters, with

the extracted spectral envelope parameters. On the other hand, in the subjective eval-

uation, both the quality of the generated speech sounds and the controllability of the
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system were evaluated. In the first subjective evaluation of the speech quality, the

performance of the methods for manipulating articulatory parameters, described in

Section 3.3.2, is compared in terms of the naturalness of the modified speech sounds.

Then, in the second subjective evaluation, the performance of the implementations of

the direct waveform modification method, described in Section 3.4, which avoids the

use of a vocoder-based procedure, is compared by examining the quality of modified

speech waveforms under several speaking conditions. Finally, the controllability of the

system was evaluated by a categorical perception evaluation in which several vowel

sounds were modified by manipulating the articulatory positions.

3.5.2 Objective Evaluation

Accuracy of inversion mapping

To measure the accuracy of the acoustic-to-articulatory inversion mapping described

in Section 2.2.3, first, the root-mean-square (RMS) error of the estimated articulatory

parameters relative to the measured values was calculated as follows:

RMSE(d) =

√∑T
t=1(a

(o)
t (d)− a

(e)
t (d))2

T
, (3.11)

where RMSE(d) is the RMS error for the dth dimension of the articulatory parameters.

The measured and estimated dth dimension articulatory parameters are respectively

denoted as a
(o)
t (d) and a

(e)
t (d) at frame t. The lowest errors of 1.42 mm and 1.41 mm

were achieved by using 128 mixture components for both male and female speakers,

respectively. This result is consistent with the related work in [16].

Secondly, the correlation coefficient was measured, which was also calculated between
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the estimated and measured articulatory parameters as follows:

r(d)=

∑T
t=1(a

(o)
t (d)− â

(o)
t (d))(a

(e)
t (d)− â

(e)
t (d))√∑T

t=1(a
(o)
t (d)− â

(o)
t (d))2

∑T
t=1(a

(e)
t (d)− â

(e)
t (d))2

, (3.12)

where r(d) is the correlation coefficient for the dth dimension of the articulatory pa-

rameters. The mean values of the measured and estimated dth dimension articulatory

parameters are respectively denoted as â
(o)
t (d) and â

(e)
t (d) at frame t. The highest cor-

relation coefficients of 0.79 and 0.80 were yielded by using 128 mixture components for

both male and female speakers, respectively. This result is also consistent with [16].

Accuracy of production mapping

To measure the accuracy of the articulatory-to-acoustic production mapping, de-

scribed in Section 2.2.3, the mel-cepstral distortion between the estimated mel-cepstral

parameters and the extracted values was calculated as follows:

Mel-CD[dB] =
10

ln 10

√√√√2
24∑
d=1

(c(o)(d)− c(e)(d))2, (3.13)

where c(o)(d) and c(e)(d) denote the dth dimension of the extracted and estimated mel-

cepstral parameters, respectively. The final result was averaged over all samples of

training data and over all 24 dimensions of mel-cepstral parameters. The lowest mel-

cepstral distortion values of 4.70 dB and 4.94 dB were achieved by using 64 mixture

components for both male and female speakers, respectively, which are also comparable

results to those in [16].

Accuracy of sequential procedure of inversion and production mappings

To assess the effectiveness of the sequential inversion and production mappings, de-

scribed in Section 3.3.1, the mel-cepstral distortion between estimated mel-cepstral
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parameters and extracted mel-cepstral parameters was also measured. The estimated

mel-cepstral parameters were converted from the estimated articulatory parameters

with the sequential inversion-production mapping. Furthermore, the mel-cepstral dis-

tortion results yielded by using the GMM of the production mapping trained with the

estimated articulatory training data instead of the measured articulatory training data

was also measured.

The lowest distortion values of 4.38 dB and 4.65 dB were achieved by using 128 mix-

ture components for both male and female speakers, respectively. This improvement

was achieved because the estimated articulatory parameters are the most likely ones to

be converted from the input mel-cepstral parameter sequence. Therefore, by estimat-

ing the input mel-cepstral parameters, which is performed in the sequential inversion-

production mapping, one can evaluate the appropriateness of this mapping procedure.

On the other hand, by using the estimated articulatory training data to train the GMM

production used in the sequential mapping, the lowest values of 3.99 dB and 4.20 dB

were achieved by using 64 mixture components for both male and female speakers,

respectively. In the following experiments for subjective evaluation, the GMMs for the

sequential inversion and production mappings with 128 mixture components were used.

3.5.3 Subjective Evaluation of Speech Quality

Comparison of articulatory manipulation methods

In the first subjective evaluation of the speech quality, the performance of the meth-

ods for manipulating articulatory parameters in Section 3.3.2 is compared. To do this,

the scaling factors of the tongue tip movements on the y-axis were modified using five

scaling values from 1.0-fold to 5.0-fold (hyperarticulation can be achieved by exagger-
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Figure 3.5: Mean opinion score (MOS) results of male speaker (msak0) for the eval-

uation of modified speech quality by scaling the tongue tip movements in y-coordinate

with two different methods of articulatory parameter manipulation.

ating the articulatory motions with value more than 1.0, while hypoarticulation by

dimishing their range with value less than 1.0). Listeners were asked to evaluate the

quality of the modified speech sounds in a mean opinion score (MOS) evaluation using

a range of scores from 1.0 to 5.0, where 5.0 was the highest. The number of listeners

was 10. The number of distinct utterances per listener was 15, which were randomly

taken from the 110 evaluation data.

The MOS results for the different methods of manipulating the articulatory param-

eters are shown in Figs. 3.5 and 3.6 for the male and female speaker, respectively. The

results show that the method considering the intercorrelation of articulatory parame-

ters, described in Section 3.3.2, gives higher scores than the simple linear transformation

method for both of the male and female speaker data. It can also be observed that
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Figure 3.6: Mean opinion score (MOS) results of female speaker (fsew0) for the eval-

uation of modified speech quality by scaling the tongue tip movements in y-coordinate

with two different methods of articulatory parameter manipulation.

this method still preserves the quality of the modified speech up to a scaling value of

2.0-fold, which implies that higher values would lead to possible abnormalities caused

by the physical constraints within the vocal tract being exceeded.

Comparison of spectrum differential calculation methods

In the second subjective evaluation of speech quality, the performance of the imple-

mentations of the direct waveform modification method in Section 3.4, which avoids

the use of a vocoder-based speech generation framework to alleviate the quality degra-

dation of synthetic speech, is compared. To do this, three speaking conditions were

emulated by scaling the trajectories of articulatory movements: normal articulation,

hypoarticulation, and hyperarticulation. Naturally, prosodic elements, such as the
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Figure 3.7: MOS results for the evaluation of the modified speech quality under three

speaking conditions using the vocoder-based framework and three implementations of

the direct waveform modification method.

speaking rate and glottal stops, are included in the characterization of speaking con-

ditions [103]. However, because the spectral characteristic is the characteristic most

closely related to the phonetic quality, it can be relatively easily modified by manip-

ulating the articulatory movements. To accomplish this, 1.0-fold scaling to emulate

the normal articulation condition, 0.5-fold scaling for hypoarticulation, and 2.0-fold

scaling for hyperarticulation were used. A MOS evaluation was conducted to assess

the quality of modified speech sounds, with a range of scores from 1.0 to 5.0. Four

different speech generation procedures were compared: the vocoder-based method, the

basic method of direct waveform modification (DiffBM), the refined method (DiffRM),

and the refined method with a differential GMM (DiffGMM). The number of listeners

was 12. The number of distinct utterances was 8.

The MOS results of the male and female speakers are shown in Fig. 3.7. These results

demonstrate that the implementations of the direct waveform modification method,

particularly the refined method (DiffRM) and the refined method with the differential

GMM (DiffGMM), significantly improve the quality of the modified speech over all
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Figure 3.8: Spectrograms of modified speech waveform under hyperarticulation (2.0-fold)

condition using vocoder-based procedure (second top) and the three direct waveform

modification schemes for the utterance “Dolphins are intelligent marine mammals”

from the male speaker, while the spectrogram of input speech waveform is shown at the

top.

three speaking conditions for both male and female speakers. On the other hand, the

basic method (DiffBM) yields only a small improvement from the conventional vocoder-

based method compared with the DiffRM and DiffGMM. This is because, even though

the vocoder-based excitation generation procedure is avoided, the overall structure of

the generated speech waveform still inherits the oversmoothed characteristics, which
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Figure 3.9: Categorical perception results for evaluation of controllability of the system

by modification of vowel sounds for male speaker.

are alleviated in the DiffRM and DiffGMM methods. Higher scores yielded from the

male speaker may have been caused by the higher accuracy in the estimation of speech

spectrum for the male speaker than the female speaker. Spectrograms of a sample

utterance, i.e., “Dolphins are intelligent marine mammals”, from the male speaker

generated using all four speech generation procedures in the hyperarticulation speaking

condition (2.0-fold scaling) are shown in Fig. 3.8. It can be observed that at higher

frequency bands, a strong periodic structure is generated by the vocoder-based method,

while the DiffBM method is capable of preserving the more natural aperiodic structure,

which is further refined by using either DiffRM or DiffGMM.
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3.5.4 Subjective Evaluation of Controllability

In the final subjective evaluation, the controllability of the articulatory controllable

speech modification system by controlling several vowel sounds through the manipula-

tion of articulatory positions was assessed. Specifically, three front vowels in English

were modified, i.e., /I/, /E/, and /æ/. The prominent difference between these vowels

in terms of articulation is in the height of the tongue during their pronunciation. For

vowel /I/, the tongue is located at the highest position among the three vowels, that

for vowel /æ/ is located at the lowest position, and that for vowel /E/ is located at

an intermediate position. To simulate these conditions, the tongue position was set at

the middle frame of vowel /E/ at five different positions relative to the original posi-

tion: +1.0 cm, +0.5 cm, 0 cm, −0.5 cm, and −1.0 cm. A more positive value means

that the position is higher. The modified middle-frame position of the tongue height

was interpolated to the middle-frame configurations of its surrounding left and right

phonemes by using cubic-spline interpolation to ensure a smooth trajectory for the

modified articulatory positions. In total, 10 distinct words containing the vowel /E/

excerpted from the evaluation data were chosen. The evaluation involved a categorical

perception procedure. Each of the modified speech samples of the chosen words was

presented to the listeners, along with a label showing its written word including the

modified vowel, which was written with a question mark. Each of the listeners was

asked to guess the missing vowel, either /I/, /E/, or /æ/. The total number of listen-

ers was 10 none of which were native English speakers. The refined direct waveform

modification method with the differential GMM (DiffGMM) was used to generate the

speech sounds. Frames corresponding to the target vowels, i.e., /I/ and /æ/, were

removed when training the GMMs.

Results of the categorical perception evaluation for both male and female speakers



3.5. Experimental Evaluation 69

P
e
rc

e
p

ti
o
n

 P
e
rc

e
n

ta
g
e
 (

%
)

Tongue’s height difference (cm)

0

20

40

60

80

100

+1.0 +0.5 0 -0.5 -1.0

/i/ /e/ /æ/
p

Height difference of tongue

Figure 3.10: Categorical perception results for evaluation of controllability of the system

by modification of vowel sounds for female speaker.

are respectively shown in Fig. 3.9 and Fig. 3.10. It can be observed that the differences

in the articulatory position configuration indeed lead to a change in the perception of

the vowel sounds, as has also been observed in [17]. This is shown by the high gradient

of the perception for vowel /I/ as the position of the tongue becomes higher and the

moderate gradient for vowel /æ/ as the position becomes lower. This difference is

most likely caused by the relatively similar spectral characteristics of vowels /I/ and

/æ/, considering that none of the listeners were native English speakers. Samples of

linear predictive coding (LPC) spectrums containing the first three formants of the

modified vowel for the word “stems” from the male speaker are shown in Fig. 3.11.

These spectrums suggest the consistency of the formant characteristics of these three

vowels, where vowel /I/ has the lowest F1 and highest F2, vowel /æ/ has the highest

F1 and lowest F2, and vowel /E/ has intermediate values for both formants. Moreover,
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comparison of global variance (GV) of the mel-cepstral parameters, over all utterances

containing the modified vowels, generated with the vocoder-based and the all three

spectrum differential system, is given in Fig. 3.12. The graph shows that the GVs

computed from the diffRM and diffGMM methods are very close to those of the original

waveform, in which high-quality modified speech sounds can be confirmed. Note that

because of the removal of the frames corresponding to the target vowels in the training

procedure, this implies that alterations in articulatory configurations that are not yet

known/learned can still lead to the appropriate production of intended speech sounds.

Applications in which articulatory parameters are deliberately modified for effect, e.g.

for language learning or speech therapy, rely on the underlying waveform generation to

be well behaved when pushed into configurations outside of that found in the training

data. This experiment can be considered as an important test of the robustness of the

approach.

3.6 Discussion

To make the system more viable, it should not rely on only a limited amount of

speaker characteristics. However, it is to be understood that the development of ar-

ticulatory data is not a straightforward procedure. Therefore, an approach that could

take advantage of the available speech and articulatory data to adapt with arbitrary

speaker characteristics is to be considered. Such approach would alleviate the need in

collecting articulatory data of a desired new speaker. One effective way of doing it is

to use the vocal tract length normalization (VTLN) technique [104]. In this method,

to compensate the difference in vocal tract lengths, a frequency warping function is

employed in warping the frequency spectrum before computing the cepstral parame-

ters. Hence, the acoustic space of available speakers can be adapted into the acoustic
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space of the desired speaker. By using the trained mapping models with the adapted

acoustic space, given an unseen speech data of the target speaker, its corresponding

articulatory movements can be estimated. Note that their movements would imitate

the articulatory configurations of the trained speakers, as it has also been implemented

with a similar idea in [105]. Then, in the production mapping, given the articulatory

parameters, the estimated acoustic spectrum should be warped into the spectrum of

the desired speaker. An alternative way to do speaker-independent mapping is by

employing the idea of eigenvoice-based voice conversion [106]. In this framework, the

desired speaker characteristics can be controlled with an optimum weight set that in-

fluence the eigenvoice parameters. Even with only a limited amount of adaptation

speech data from the new speaker, the optimum parameters can be easily obtained. In
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Figure 3.12: Global variance of each mel-cepstral dimensions from all utterances con-

taining modified vowel /I/ onto /E/ by leveraging the tongue height by 1 cm using

the vocoder-based system and the three proposed spectrum differential systems. Global

variances of the original waveform are also presented.

the implementation, the idea would be similar to that of the VTLN one, but instead of

using the frequency warping procedure, the voice conversion procedure would be used.

3.7 Conclusion

In this work, a successful way of exploiting articulatory parameters through an ar-

ticulatory controllable speech modification system with a sequential procedure of in-

version and production mappings has been presented. GMM-based statistical feature

mapping technique is employed for each of the acoustic-to-articulatory inversion map-

ping and the articulatory-to-acoustic production mapping. An input speech signal is
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modified through manipulation of the unobserved articulatory movements with the use

of sequential inversion and production mappings. In controlling the movements of the

articulators, a method that considers the intercorrelation of articulatory parameters is

deployed after a simple linear transformation is performed. Furthermore, to alleviate

the quality degradation of modified speech sounds, several implementations of a direct

waveform modification method that avoids the use of a vocoder-based excitation gen-

eration procedure are applied. The experimental results demonstrate the following. 1)

The sequential inversion and production mappings yield higher accuracy in estimating

spectral envelope parameters, i.e., of 4.38 dB and 4.65 dB mel-cepstral distortions for

male and female speakers, compared with 4.70 dB and 4.94 dB for a conventional pro-

duction mapping that uses the measured articulatory parameters, respectively. 2) The

method for manipulating articulatory parameters by considering their intercorrelation

generates more natural results than a simple linear transformation method, i.e., an

MOS score of 3.1 compared with a score of 2.1 for a twofold scaling value. 3) The

implementations of the direct waveform modification method significantly improve the

quality of the modified speech by avoiding the use of a vocoder-based excitation gen-

eration process and overcoming the oversmoothing problem by yielding MOS scores

of above 3.5, while for the vocoder-based process, the MOS score was usually below

2.0. 4) The controllability of the system is ensured by its capability of allowing the

modification of vowel sounds through a certain manipulation of articulatory configu-

rations, giving averages of about 45% for correct perceptions of vowel /æ/, 85% for

vowel /E/, and 70% for vowel /I/. In the future, corresponding speaker-independent

system [104–106] for employment in speech applications with interactive operation and

also for voice conversion by vocal-tract shape modeling are worth be investigated.





4 Statistical Voice Conversion

with Neural Network Spectral

Mapping and WaveNet Vocoder

4.1 Introduction

Every human being has their own speech characteristics. The capability of handling

the speaker characteristics within a speech signal has great potential to be employed

in real-world applications. Indeed, this so-called voice conversion (VC) framework has

been used in several works, such as, singing voice conversion [58, 96], body-conducted

speech conversion [10], speech signal recovery [5,6], and speech modification [18]. The

growing interest in VC development motivated many researchers around the world to

conceive the 1st Voice Conversion Challenge in 2016 [107]. Following this, the voice con-

version framework elaborated within this chaper was participated in the 2nd Challenge,

i.e., the Voice Conversion Challenge (VCC) 2018 [108].

In the development of a VC system, three aspects need to be considered: the con-

version of spectral parameters, the conversion of prosodic parameters, and waveform

generation. In the spectral parameter conversion, many techniques based on statistical

methods have been proposed, such as, codebook-based conversion [1], Gaussian mixture

model (GMM)-based mapping [2], and a neural-network based system [62, 109]. On

the other hand, in the handling of prosodic parameters, such as fundamental frequency



76 4 Statistical Voice Conversion with Neural Network Spectral Mapping andWaveNet Vocoder

(F0), several methods have been commonly used including a simple mean/variance lin-

ear transformation, a contour-based transformation [110], GMM-based mapping [111],

and neural network [112]. For waveform generation, approaches include the source-

filter vocoder system [3], the latest direct waveform modification technique [96], and

the use of state-of-the-art WaveNet modeling [23–25].

In this work, neural network architectures for spectral modeling as well as a WaveNet-

based vocoder for waveform modeling and generation are utilized. A neural network

design is adopted for spectral parameter conversion, where a structure combining a

deep neural network (DNN) and a deep mixture density network (DMDN) [113] is

used to form a cascaded DMDN (CascDMDN). In a conventional DNN or DMDN,

given a sequence of source spectral parameters, the target sequence is estimated using

a single Gaussian distribution in a DNN or using a mixture of Gaussian distributions

in a DMDN. In CascDMDN, a sequence of estimated source spectral parameters is

first inferred within its first set of hidden layers, which is then fed into the second set

to estimate the target sequence. For the conversion of prosodic parameters, a linear

transformation of framewise F0 values of the source speaker into those of the target on

the basis of their mean and variance statistics is used.

In the waveform-processing module, the state-of-the-art WaveNet-based vocoder [23–

25] framework to directly model the waveform is used. In WaveNet [14], each waveform

sample is conditioned using previous samples and possible auxiliary features within a

stack of dilated convolutional layers. The structure of the dilated convolutions makes it

possible to exponentially increase the receptive field of waveform samples efficiently. In

addition, in this framework, the auxiliary features include the voiced/unvoiced (U/V)

decision, continuous F0 values, mel-cepstrum parameters, and aperiodicity features. To

obtain the set of refined speech parameters, a postprocessing method based on direct
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waveform modification [96] in several analysis-synthesis flows is employed. Then, a

model selection procedure is performed to select the best waveform generation flow in

an utterance-wise manner. In the evaluations carried out at the VCC 2018, the voice

conversion system presented in this chapter achieved second place with an average

mean opinion score (MOS) of 3.44 for speech quality and 85% accuracy for speaker

similarity.

The rest of the chapter is organized as follows. Spectral parameter conversion models

are elaborated in Section 4.2. The waveform-processing module is described in Section

4.3. Experimental results are presented in Section 4.4. Finally, the conclusion is given

in Section 4.5.

4.2 Spectral parameter conversion models

In this section, the deep learning structures used to perform spectral parameter

conversion are elaborated. Their graphical model representations are illustrated in

Fig. 4.1. Moreover, the overall process described in this section is illustrated in the

upper diagram of Fig. 4.2.

4.2.1 Conversion model with deep mixture density network

(DMDN)

This system uses a DMDN [113] in the spectral parameter conversion by inferring

a mixture of pdfs of the target spectral feature vector. Given an input source feature

vector X t at frame t, the conditional pdf of the target spectral feature vector Y t is
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then defined as follows:

Pm(Y t|X t,λ) =
M∑

m=1

αm,tP (Y t|µm,t,Σm,t), (4.1)

where the time-varying target mean vector and diagonal covariance matrix are respec-

tively denoted as µm,t and Σm,t for the mth mixture component. The weight of the

mth mixture component is denoted as αm,t. The total number of mixture components

is M . These time-varying mixture parameters are taken from the network output

fλ(X t) = [f
(α1)
λ (X t), f

(µ1)
λ (X t)

⊤, f
(Σ1)
λ (X t)

⊤, . . . , f
(αM )
λ (X t),

f
(µM )
λ (X t)

⊤, f
(ΣM )
λ (X t)

⊤]⊤ as

αm,t =
f
(αm)
λ (X t)∑M

n=1 f
(αn)
λ (X t)

(4.2)

µm,t = f
(µm)
λ (X t) (4.3)

Σm,t = diag [exp (f
(Σm)
λ (X t))

◦2], (4.4)

where ◦ denotes a Hadamard elementwise product. The DMDN spectral conversion

model is represented by the middle graph in Fig. 4.1.

In the training phase, a set of updated network parameters λ̂ is estimated by back-

propagating the negative log likelihood derived from the conditional pdf given in

Eq. (4.1) in a similar manner to the DNN in Eq. (2.9). On the other hand, in the

conversion phase using the DMDN, given a source spectral feature vector sequence

X, the trajectory of the target spectral parameters ŷ is estimated by also using the

MLPG [65] procedure as follows:

ŷ = (W⊤Σ
−1
W )−1W⊤Σ

−1
µ. (4.5)

The sequence of the target mean vectors and that of the diagonal covariance matrices
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Figure 4.1: Graphical representations of spectral conversion models using DNN,

DMDN, and CascDMDN.

in the above equation are respectively given by

µ = [µ⊤
m̂1,1

,µ⊤
m̂2,2

, . . . ,µ⊤
m̂T ,T ]

⊤ (4.6)

Σ = diag [Σm̂1,1,Σm̂2,2, . . . ,Σm̂T ,T ], (4.7)

where the suboptimum mixture component sequence m̂ = {m̂1, m̂2, . . . , m̂T} is deter-

mined as follows:

m̂ = argmax
m

T∏
t=1

αm1,t. (4.8)

4.2.2 Conversion model with cascaded DMDN (CascDMDN)

To develop a more flexible spectral parameter model, a cascading structure of the

DNN and DMDN called the cascaded DMDN (CascDMDN) is employed. In CascD-

MDN, two sets of hidden layers are used, where the first set is used to estimate the
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pdf of the source spectral parameters and the second one is used to estimate a mixture

of pdfs of the target parameters. Therefore, the conditional pdf of the target spectral

feature vector is defined as follows:

P (Y t|X t,λ) ≃ Ps(X̂ t|X t,λ1)Pm(Y t|X̂ t,λ2), (4.9)

where the parameters of the first set are denoted as λ1 and those of the second one

are denoted as λ2. The set of network parameters of CascDMDN is denoted as λ =

{λ1,λ2}. In the above likelihood function, the first conditional pdf is similar to that

of the DNN in Eq. (2.8), while the second one refers to the mixture output layer of

the DMDN as in Eq. (4.1). The representation of CascDMDN is given by the right

graphical model in Fig. 4.1.

In the training phase of CascDMDN, a set of updated network parameters λ̂ is

estimated by backpropagating the following loss:

λ̂ = argmin
λ

−
T∏
t=1

Ps(X t|X t,λ1)P (Y t|fλ1(X t),λ2). (4.10)

Note that not only does the estimation of the source spectral feature vector in the

first set give flexibility in the parameter inference, such as, for computing spectral

differences between the estimated target and source spectral parameters as shown in

the upper part of Fig. 4.2, but it also provides an additional regularization term in

model training.

Then, in the conversion phase, given a source spectral feature vector sequence X,

the trajectory of the target spectral parameters y is estimated in a similar manner

to the MLPG of the DMDN in Eq. (4.5), where the mixture output layer is denoted

as fλ2(fλ1(X1)). Following the structure of the network, the trajectory of the source

spectral parameters x̂ = [x̂⊤
1 , x̂

⊤
2 , . . . , x̂

⊤
T ]

⊤ can be estimated as in the MLPG of the

DNN in Eq. (2.11). In addition, the global variance (GV) [3] postfilter is applied to
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and “diff anasyn”, to be fed into the waveform-processing module.

the converted spectral sequence to alleviate oversmoothed structures.

4.3 Waveform-processing module

A WaveNet-based vocoder [23–25] to model the waveform of the target speaker and

generate the converted waveform using estimated speech features is used in this system.

Several flows are used in producing the estimated spectral features, where the direct

waveform modification [96] method is employed. In addition, a selection procedure is

performed to obtain the best waveform generation flow in an utterance-wise manner.
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4.3.1 Analysis-synthesis with direct waveform modification

It is well known that vocoder-based waveform generation usually causes quality

degradation in the generated speech owing to the difficulty of modeling source excita-

tion signals. To avoid this issue, the direct waveform modification (DiffVC) method [96]

has been proposed to directly filter an input waveform according to spectral differences

between the target waveform and the input waveform. However, because the excitation

features are not converted, it is difficult to convert speaker characteristics with a large

difference in prosody characteristics, such as in a cross-gender conversion. Here, an

analysis-synthesis method to obtain refined spectral parameters that is based on the

DiffVC method while making it possible to perform F0 conversion within the analysis-

synthesis flow is described, as shown by the bottom flow in Fig. 4.2.

The analysis-synthesis procedure produces three different types of speech features to

be fed into the WaveNet vocoder. The first one is called the “cv mcep” set, which con-

sists of the GV-postfiltered estimated target spectral parameters (“GV-PF-ed mcep”)

and the input band-aperiodicity features. Following this, the input waveform is then

directly filtered (“diff-waveform”) according to the spectral differences between GV-

PF-ed mcep and the input spectral parameters. Then, by analyzing diff-waveform

according to the original F0 values, the second feature set, called the “diff” set, which

consists of the modified spectral and band-aperiodicity features, is obtained. Next,

after performing the conversion of the F0 values, the F0-modified diff-waveform (“diff-

conv-F0 waveform”) is synthesized with a vocoder by using diff parameter set. Finally,

the third set of parameters, called “diff anasyn”, is obtained by analyzing diff-conv-F0

waveform according to the converted F0 values. Note that the estimated target spec-

tral parameters are generated in accordance with Section 4.2, while the converted F0

values are used by all three types of speech parameter set. Furthermore, the use of the
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estimated input spectral parameters to compute the spectral differences (“diff-mcep”)

was also investigated, as shown in the upper part of Fig. 4.2, although it did not yield

significant improvements.

4.4 Experiments and results

4.4.1 Experimental conditions

The speech database for the HUB task of the VCC 2018 consisted of four source

speakers and four target speakers, which had two female and two male speakers for the

source and another two female and two male speakers for the target. In the training

set, each speaker uttered the same set of 81 English sentences, whereas the evaluation

set consisted only of the four source speakers uttering another set of 35 sentences. The

speech signal sampling rate was 22,050 Hz. The WORLD [22, 114] package was used

in speech analysis. From a speech signal, 35-dimensional mel-cepstrum parameters in-

cluding the 0th power coefficient, F0 values, and 513-dimensional aperiodicity features,

which were coded into two-band aperiodicity parameters, were used. The frame shift

was set to 5 ms.

Following the spectral parameter conversion module described in Section 4.2, the

DNN used four hidden layers. On the other hand, the DMDN used a total of three

hidden layers and 16 mixture components. CascDMDN, which is a combination of

these two structures, used one hidden layer for estimating source spectral parameters

and four hidden layers with 16 mixture components for estimating target spectral

parameters. ReLU activation function was used for the hidden units. For every model,

the learning rate was set to 0.0006, the weights were initialized with the Xavier [115]

method, the initial biases were set to zero, the Adam [116] optimization was employed,
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and an utterance-size batch was used.

This system used the WaveNet-based vocoder described in Section 2.4.2 for wave-

form modeling and generation. The hyperparameters of the WaveNet vocoder are as

follows: the learning rate was set to 0.001 with a decay factor of 0.5 per 50,000 iteration

steps, 20,000 batch-size samples were used with a total of 200,000 iteration steps, the

number of residual blocks was 30, the dilation sequence was 1, 2, 4, . . . , 512 with three

repetitions, the number of channels for residual blocks and dilated causal convolution

was 512, the number of channels for skip connection was 256, and the Adam [116] algo-

rithm was used for optimization. To train the WaveNet model, a speaker-independent

(SI) network was first trained by using all the data of eight speakers in the HUB task

plus the data of four speakers from the SPOKE task, i.e., with another 81 different sets

of utterances, and the data of two speakers from the ARCTIC database, i.e., “rms” and

“slt”, with each having 1132 utterances. The SI-WaveNet model was then fine-tuned

by updating only the output layers using the data of each of the four target speakers,

which resulted in four WaveNet models.

In the waveform generation phase, the three different auxiliary features described in

Section 4.3.1 were considered, i.e., cv mcep, diff, and diff anasyn, as shown in Fig. 4.2.

The list of priorities was made heuristically, with the diff anasyn set at the top followed

by the diff set. As described in Section 2.4.3, to avoid collapsed segments in the

WaveNet-generated waveforms, this system used a flow selection procedure to rule out

waveforms with low quality.

The results of using mel-cepstral distortion to evaluate the spectral conversion mod-

ule are given in the objective evaluation results. An internal subjective evaluation was

conducted to assess the performance of the system with the provided baseline system,

i.e., “sprocket” [117], where the results are given in the internal subjective evaluation
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section. Finally, the last three sections describe the official results of the subjective

evaluation in VCC 2018.

4.4.2 Objective evaluation

To compare the several deep learning models presented in Section 4.2, an evaluation

of mel-cepstral distortion was performed for the DNN, DMDN, and CascDMDN for

the spectral parameter estimation. In this objective evaluation, the first 10 utterances

from the training dataset were excluded while training the models. Then, they were

used to compute the mel-cepstral distortion between the extracted target mel-cepstrum

parameters and the estimated values as follows:

Mel-CD[dB]t =
10

ln 10

√√√√2
34∑
d=1

(yt(d)− ŷt(d))2, (4.11)

where yt(d) and ŷt(d) denote the dth dimension of the extracted mel-cepstrum param-

eters and that of the estimated values at frame t, respectively.

The trends of the mel-cepstral distortion averaged over all 16 speaker pairs during 70

training epochs are shown in Fig. 4.3. It can be observed that CascDMDN is capable

of providing much more stable distortion than the conventional DNN and slightly

more stable distortion than the conventional DMDN. The flexibility of the CascDMDN

structure in providing access to estimated source spectral parameters makes a good

choice for the spectral conversion model in this system. The overfitting condition

observed in this objective evaluation served as a reference in training the final model

using all training data.
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Figure 4.3: Plot of mel-cepstral distortions for DNN, DMDN, and CascDMDN, mea-

sured with the first 10 utterances excluded from the training dataset.

4.4.3 Internal subjective evaluation

In the internal subjective evaluation, two preference tests (naturalness and speaker

similarity) were conducted to compare the performance of this system with that of the

baseline system, i.e., sprocket [117]. All 16 speaker pair models for the four source

and four target speakers were used in the evaluation. The total number of available

evaluation utterances was 35. The total number of listeners was eight and none of

them were native English speakers. In the naturalness test, two audio samples, one

each for this system and the baseline system, of the same utterance were presented

to a listener in a random order. Then, the listener was asked to select the audio

preference according to naturalness. Meanwhile, in the preference test, in addition to

two generated audio samples, two original audio samples of the corresponding target
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Table 4.1: Result of naturalness preference test in the internal subjective evaluation of

this system (NU) and the baseline (sprocket) for same-gender and cross-gender conver-

sions.

Naturalness Same-gender Cross-gender

Baseline 68%± 7% 42%± 7%

NU 32%± 7% 58%± 7%

speaker randomly taken from the training dataset were presented. The listener was

then asked to select their preference based on the similarity to the target speaker

characteristic. From the 35 evaluation utterances, three were randomly taken for each

speaker pair in each preference test, resulting in a total of 92 audio samples for each

listener.

The results of the internal subjective evaluation are summarized in Tables 4.1 and

4.2. It can be observed that the baseline system achieves a significantly higher pref-

erence score in terms of naturalness for the same-gender conversions, with a score of

68%, compared with 32% for this system. However, this system yields a higher natural-

ness preference score for the cross-gender conversions, with a score of 58%, compared

with 42% for the baseline. On the other hand, in the preference test for speaker sim-

ilarity, this system achieves higher preference scores for both same- and cross-gender

conversions, with scores of 57% and 55%, compared with 43% and 45% for the baseline,

respectively. This result is reasonable because the baseline, i.e., sprocket, uses vocoder-

free waveform generation for same-gender conversions and vocoder-based generation for

the cross-gender conversions. This implies that the use of a WaveNet-based vocoder can

improve the generated waveform quality compared with that obtained using the con-

ventional vocoder and gives much higher accuracy than both the conventional vocoder



88 4 Statistical Voice Conversion with Neural Network Spectral Mapping andWaveNet Vocoder

Table 4.2: Result of speaker identity preference test in the internal subjective evalua-

tion of this system (NU) and the baseline (sprocket) for same-gender and cross-gender

conversions.

Spk. Identity Same-gender Cross-gender

Baseline 43%± 7% 45%± 8%

NU 57%± 7% 55%± 8%

and the vocoder-free system, i.e., direct waveform modification.

4.4.4 Official subjective evaluation

In VCC 2018, to compare the performance of the submitted systems, an official

subjective evaluation was conducted, which consists of a mean opinion score (MOS)

test on the speech quality and a speaker similarity test. In the MOS test, each listener

was given stimuli of audio samples and asked to evaluate the naturalness of the speech

sounds using a five-point scale (1: Completely unnatural; 2: Mostly unnatural; 3:

Equally natural and unnatural; 4: Mostly natural; 5: Completely natural). In the

speaker similarity test, each listener was given a pair of audio samples as stimuli and

asked to judge whether they were produced by the same speaker. Their confidence

in the decision was given on a four-point scale (1: Same, absolutely sure; 2: Same,

not sure; 3: Different, not sure; 4: Different, absolutely sure). The total number of

listeners was 106 (49 female, 57 male).

The results of the official objective evaluation are summarized in Fig. 4.4. The

results show the average MOS in terms of speech quality, plotted on the x-axis, for

every submitted system, including the baseline (sprocket), as well as the original source
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Figure 4.4: Scatter plot of mean opinion score (MOS) for speech quality and speaker

similarity score for the submitted systems along with baseline (sprocket) [B01], source

[S00], and target [T00] speech. This VC system (NU) is N17.

and target speakers. The similarity scores (in %), computed by adding up the two

confidence scores in each binary similarity decision, are plotted on the y-axis. This VC

system (NU), denoted as N17, achieves an MOS of 3.44 for speech quality, compared

with 3.57 for the baseline, 4.15 for the top system, i.e., N10, and also 3.44 for the

closest system, i.e., N08. On the other hand, for the speaker similarity test, this
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Figure 4.5: MOS results for speech quality for same-gender conversions, i.e., female-

to-female (F-F) and male-to-male (M-M) conversions. This VC system (NU) is N17.

system achieves a similarity score of 85%, outperforming the baseline (68%) and all

other systems except system N10, which has slightly higher accuracy (86%). Overall,

this system was placed as the runner-up behind the top system, N10. Details of the

official subjective evaluation results are given in the following sections.

4.4.5 Detailed results for speech quality

The detailed official results of the MOS for speech quality for all systems including the

baseline, are given in Figs. 4.5 and 4.7. The results for same-gender conversions, which

consist of female-to-female (F-F) and male-to-male (M-M) conversions, are shown in

the Fig. 4.5, whereas, those for the cross-gender conversions, i.e., female-tomale (F-M)

and male-to-female (M-F), are shown in Fig. 4.7.
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Figure 4.6: Similarity percentage results for same-gender conversions, i.e., F-F and

M-M conversions with two confidence levels in the binary decision. This VC system

(NU) is N17.

This VC system (NU), denoted as N17, achieves an MOS of 3.24 for the cross-gender

conversions and 3.63 for the same-gender conversions, which place the system in the

fourth and the third places, respectively. The MOSs for each gender conversion are

3.89 for F-F, 3.38 for M-M, and 3.24 for both F-M and M-F. Compared with the

baseline, it is expected that this system will perform better in cross-gender conversions

because sprocket uses the vocoder-based method in these conversions. The MOSs for

the baseline system are 4.10, 3.88, 3.31, and 3.00 for the above conversions, respectively.

However, this system is outperformed by the top system, i.e., N10, which achieves an

MOS of over 4.10 for every gender-type conversion. Overall, compared with the other

submitted systems, this system yields a good performance with an average MOS of
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Figure 4.7: MOS results for speech quality for cross-gender conversions, i.e., female-

to-male (F-M) and male-to-female (M-F) conversions. This VC system (NU) is N17.

3.44 over all speaker pairs, the same as the system N08, slightly below those of the

baseline (3.57) and far behind system N10 (4.15).

4.4.6 Detailed results for speaker similarity

The official results for the speaker similarity evaluation are shown in Figs. 4.6 and

4.8. The results for same-gender conversions, i.e., F-F and M-M, are shown in Fig. 4.6,

whereas the result for cross-gender conversions, i.e., F-M and M-F, are shown in

Fig. 4.8. These figures show the percentage of speaker similarity decisions, i.e., “same”

or “different”, each with two confidence levels, i.e., “sure” and “not sure”. To measure

the final similarity score, the percentage scores of “same” (“sure”) and “same” (“not

sure”) are added together.
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Figure 4.8: Similarity percentage results for cross-gender conversions, i.e., F-M and

M-F conversions with two confidence levels in the binary decision. This VC system

(NU) is N17.

This VC system (N17) has a total similarity score of 82% (“same” decisions), i.e.,

18% “different” decisions for the same-gender conversions, and a similarity score of

87% for the cross-gender conversions. The details for each gender conversion are as

follows: similarity scores of 82% for F-F conversion, 83% for M-M conversion, 93% for

F-M conversion, and 76% for M-F conversion. In this speaker similarity evaluation,

this system outperforms the baseline, as shown in both Figs. 4.6 and 4.8, where the

baseline has the following similarity scores in the same order: 84%, 53%, 59%, and

60%. Compared with the top system, i.e., N10, this system yields similar results:

where our system has a slightly better scores in F-F conversion (81% for N10) and in

F-M conversion (91% for N10), a lower score in M-F conversion (85% for N10), and
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a much lower score in M-M conversion (94% for N10). Overall, this system yields a

very good performance with an average similarity score of 85% over all speaker pairs,

outperforming the baseline (68%) and all of the systems (the closest are N14 with 74%,

and both N05 and N08 with 73%) except for N10, which has a slightly higher score of

86%.

4.5 Conclusion

In this work, a voice conversion (VC) system based on neural network spectral map-

ping and waveform modeling developed for the HUB task of the Voice Conversion

Challenge 2018 has been presented. This VC system adopts a deep learning archi-

tecture to develop a spectral parameter conversion model by combining a deep neu-

ral network (DNN) and deep mixture density network (DMDN) to form a cascaded

DMDN (CascDMDN). In the waveform modeling and generation, this system employs

a WaveNet-based vocoder. The auxiliary features fed into the WaveNet system are

chosen from several analysis-synthesis flows using a model selection procedure in an

utterance-wise manner. The results of the challenge put this VC system in the sec-

ond place with an average mean opinion score (MOS) of 3.44 for speech quality and a

similarity score of 85% for speaker identity.



5 Voice Conversion with Cyclic

Recurrent Neural Network and

Finely Tuned WaveNet Vocoder

5.1 Introduction

As has been described in previous chapter, voice conversion (VC) [1–3,56] is a frame-

work for transforming the voice characteristics of a source speaker into that of a par-

ticular target speaker. In order to develop a VC system, generally, a speech signal of

the source speaker is decomposed into several components that can be transformed, in

a more convenient way, into that of the target speaker, such as spectral and prosodic

features. Then, the converted speech waveform is synthesized from the transformed

speech features, such as by using vocoder-based waveform generation [3]. Observing

that a lot of speech related works have been employing VC concept [4–8,18,58,59,118],

as well as in other closely related tasks, e.g., speaking style conversion and in dialect

conversion, it is worthwhile to improve the quality of VC, especially by an examination

of the waveform generation.

In a conventional vocoder [13, 22, 119–121], assumptions on the speech production

[11, 12] procedure are used for generating the speech signal. Recently, an alternative

data-driven approach for speech waveform generation, by using neural network, has

been becoming prominent [14, 66, 68]. The latter framework, which is usually caled
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neural vocoder, has shown significant improvements for generating synthetic speech

signal with similar quality as that of the natural speech [14,122], such as the WaveNet

vocoder. This significant progress can be achieved thanks to the capability of neural

vocoder in learning from the given speech data, instead of using predefined assumptions

on speech production as in conventional vocoder. In this work, the autoregressive (AR)

neural vocoder is used, particularly WaveNet vocoder, which is conditioned on spectral

and prosodic features [23, 24] to generate speech sample-by-sample. Whereas in the

training phase, the ground truth of the previous waveform samples are given along

with the conditioning features.

As can be observed, owing to its data-driven capability, the use of neural vocoder has

a potential to improve the quality of converted speech in a VC framework. Similarly,

as in the conventional vocoder, to generate converted speech, the transformed speech

features are fed in to the neural vocoder for generating the speech waveform. Though,

thanks to its nature as a statistical model which may compensate the mismatches of

speech features, it is possible that the quality and the accuracy of converted speech will

be improved than that with conventional vocoder. In fact, indeed, the use of neural

vocoder in VC systems has recently been proven to be successful by the top performers

[15, 123] in the Voice Conversion Challenge (VCC) 2018 [108]. Note that compared

to [123], which uses intermediate phonetic-based features for WaveNet vocoder, in this

work, a parallel VC framework without any text/linguistic information is used because

not all of the time a robust automatic speech recognition can be obtained.

In [15], as also within the previous Chapter 4, although it can achieve the 2nd rank

in the VCC 2018, the mismatches between speech features have not been addressed

directly within the WaveNet vocoder. These mismatches occur between the spectral

features estimated from the spectral mapping model and the spectral features extracted
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from the speech signal. Because WaveNet is a data-driven neural vocoder, it is possible

to use oversmoothed features (estimated spectral features) for fine-tuning a model that

is pretrained with extracted spectral features. Though, in VC, this procedure is not

straightforward to be done due to the difference of temporal alignment between the

speech signal of the source speaker and that of the target speaker. In other words,

further errors would be introduced, due to the difference of temporal structure, if the

converted spectral features of the source speaker are used together with the speech

waveform of the target speaker for fine-tuning the WaveNet vocoder.

In [35], the problem can be overcome by using a concatenated mapping of target-

to-source spectral model and source-to-target spectral model, with recurrent neural

network (RNN)-based architecture, which are trained separately (ConcatRNN). This

way, an appraisal of oversmoothed target spectral features with the same temporal

structure of the target speech signal can be obtained from the concatenated flow.

However, due to the gap of connection between the two separately trained networks,

the reliability of the oversmoothed target features is not guaranteed which can hamper

the performance of the WaveNet fine-tuning.

In this work, a cyclic spectral mapping framework with RNN modules (CycleRNN)

is presented, which can optimize both of the conversion flow, i.e., source-to-target, and

the cyclic flow, i.e., to generate an appraisal of oversmoothed target spectral. The

concept of both the proposed CycleRNN spectral mapping model and the conventional

ConcatRNN closely resembles that of the back-translation method for style transfer in

natural language processing [124,125]. Specifically, the proposed CycleRNN framework

is trained by using two losses, namely the cyclic loss, i.e., for oversmoothed target

spectral, and the conversion loss, i.e., for converted source-to-target spectral, which

is computed with time-warping alignment procedure, such as dynamic-time-warping



98 5 Voice Conversion with Cyclic Recurrent Neural Network and Finely TunedWaveNet Vocoder

(DTW), due to differences in temporal structure. Due to the difference in performing

loss computations, where time-warping function is used for conversion loss, a weighting

value for the cyclic loss is needed to balance the contribution of the loss in this multi-

task-like learning framework. Note that, different than a cyclic network based on

generative adversarial network (CycleGAN) [27], the proposed CycleRNN framework

does not use a discriminator, but uses a time-warping function between source and

target speaker for direct optimization of the converted spectral features, whereas the

cyclic flow can be directly optimized because of the unchanging temporal structure.

After training the CycleRNN model, to perform WaveNet fine-tuning, the over-

smoothed target spectral features generated by using cyclic flow are used together

with the speech waveform of the target speaker. On the other hand, for the conversion

phase, the conversion flow is used to simply generate the converted source-to-target

spectral features, which are then fed into the fine-tuned WaveNet to generate the con-

verted speech waveform. The experimental results demonstrate the effectiveness of the

proposed framework achieving a mean opinion score of 3.50 for speech quality and a

speaker similarity score of 78.33% for conversion accuracy by using 1e-6 as the weight

of the cyclic loss.

This chapter is organized as follows. In Section 5.2, the RNN-based spectral model

used in this work is described. In Section 5.3, the WaveNet fine-tuning procedure and

the proposed CycleRNN spectral model are elaborated. In Section 5.4, the results of

experimental evaluations are given, which are followed by a discussion in Section 5.5.

Finally, the system is summarized in Section 5.6.
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Figure 5.1: Spectral conversion network with recurrent neural network (RNN) hidden

units and autoregressive (AR) output.

5.2 RNN-based Spectral Mapping Model

Let xt = [xt(1), xt(2), . . . , xt(d), . . . , xt(D)]⊤ and yt = [yt(1), yt(2), . . . , yt(d), . . . , yt(D)]⊤

be the D-dimensional spectral feature vectors of the source speaker and target speaker,

respectively, at frame t. Their feature vector sequences are respectively denoted as

x = [x⊤
1 ,x

⊤
2 , . . . ,x

⊤
t , . . . ,x

⊤
T ]

⊤ and y = [y⊤
1 ,y

⊤
2 , . . . ,y

⊤
t , . . . ,y

⊤
T ]

⊤. Note that in this

work, for a feedforward RNN function fλ(·), the output will either be the spectral fea-

ture vector of the target speaker yt or be that of the source speaker xt. On the other

hand, it is possible to augment the input feature vector with additional information,

such as F0 and aperiodicity features. However, to simplify the notation, either xt or yt

will be used to indicate an input feature vector of a source speaker or a target speaker,

respectively, regardless of the content.

Given an input feature vector of the source speaker xt at frame t, the estimated

spectral feature vector of the target speaker fλ(xt) = ŷt is determined through using
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gated recurrent unit (GRU) [126] blocks with an AR flow as follows:

it = [x̃⊤
t , ŷ

⊤
t−1]

⊤ (5.1)

rt = σ(W irit + bir +W hrht−1 + bhr) (5.2)

zt = σ(W izit + biz +W hzht−1 + bhz) (5.3)

nt = tanh(W init + bin + rt ⊙ (W hnht−1 + bhn)) (5.4)

ht = (1− zt)⊙ nt + zt ⊙ ht−1 (5.5)

ŷt =W yhht + byh, (5.6)

where the weights and biases are respectively denoted as W and b, ⊙ denotes the

elementwise product, and x̃t is the input feature vector processed with a convolutional

input layer as illustrated in Fig. 5.1. The reset, the update, and the new gates are

respectively denoted as rt, zt, and nt. The hidden state for the current frame t is

denoted as ht. For a GRU with more than one layer, the input feature vector of the

succeeding layer is the hidden state of the previous layer. At frame t = 0, the AR

feature vector ŷt−1 is initialized with the zero vector 0. The set of model parameters

is denoted as λ.

In the training phase, the optimized model parameters λ̂ are estimated as follows:

λ̂ = argmin
λ

1

T

T∑
t=1

10
√
2

ln 10

D∑
d=1

|ŷt(d)− yt(d)|, (5.7)

where fλ(xt) = [ŷt(1), ŷt(2), . . . , ŷt(d), . . . , ŷt(D)]⊤ and | · | denotes the absolute func-

tion. Note that, as illustrated in Fig. 5.1, owing to the use of normalization and

de-normalization layers, the loss function can be defined, as in Eq. (5.7), to be within

the spectral domain, i.e., in this case, it is the L1 loss in the mel-cepstrum domain.

In the conversion phase, to generate a sequence of converted target spectral feature

vectors ŷ = [ŷ⊤
1 , ŷ

⊤
2 , . . . , ŷ

⊤
t , . . . , ŷ

⊤
T ]

⊤, feed the RNN is simply fed with a sequence of
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input feature vectors of the source speaker x, i.e., fλ(x) = ŷ. Finally, the convolutional

input layers illustrated in Fig. 5.1 are designed to dynamically create segmental input

feature vectors through the use of convolutional weights, which can capture several

preceding and succeeding contextual input frames.

5.3 Fine-Tuning of the WaveNet Vocoder

5.3.1 WaveNet Fine-Tuning with Oversmoothed Features to

Overcome Quality Degradation Problem in VC

In a statistical VC framework, as illustrated in the top diagram of Fig. 5.2, there

are mismatches between the converted spectral features of the source speaker and the

natural spectral features of the target speaker. These mismatches degrade the quality

of the converted speech waveform generated using the WaveNet vocoder because it is

developed with the natural spectral features. In a TTS system [122], the use of the

predicted mel-spectrogram, i.e., oversmoothed spectral features, in the development of

the WaveNet model, has increased the quality of statistical TTS to that of natural

speech. Though, in VC, aligning the spectral features in the time domain with those

of the target waveform would further introduce artifacts and phonetical mismatches,

depending on the difference in the voice characteristics/speaking style between the two

speakers. In [123], this problem is overcome through the use of phonetic-based features,

i.e., a phonetic posteriorgram (PPG), which can be estimated independently for each

speaker. In this system, the WaveNet model was developed using the predicted PPG

features of each speaker. In this work, however, this problem is tackled without the use

of any text/linguistic features because a robust automatic speaker recognition (ASR)

system cannot always be built as in [123]. However, as has been stated, in VC, such a
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WaveNet degradation problem in VC due to mismatches of spectral features
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Figure 5.2: Degradation problem of WaveNet vocoder in VC due to mismatches of

speech features (top). Difficulties in using oversmoothed features to develop WaveNet

in a VC framework (middle). Proposed WaveNet fine-tuning with oversmoothed target

features to alleviate the degradation problem (bottom).

procedure is not straightforward to implement owing to the difference in the temporal

sequence alignment between a source speaker and a target speaker as illustrated in the

middle diagram of Fig. 5.2.

Before the conventional spectral mapping method used to enable WaveNet fine-

tuning in VC without any linguistic features is described, a simple modification of the

likelihood function in the WaveNet fine-tuning procedure will be explained. Following

the WaveNet likelihood function in Eq. (2.31), let us redefine the notation of the
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auxiliary parameters in frame t as ht = [g⊤t ,y
⊤
t ]

⊤, where gt contains both excitation

features, such as F0 values and voice/unvoiced decisions, and aperiodicity features.

First, before performing fine-tuning, a pretrained WaveNet model is developed by using

the natural spectral feature vectors of all available speakers. In the conventional VC

framework, this multispeaker WaveNet model is fine-tuned with the natural spectral

features of the target speaker yt. In the proposed method, to improve the WaveNet

model in a VC framework, instead of using the natural spectral features, the WaveNet is

finely tuned by using the predicted target spectral feature vectors ŷ
(pred)
t , which should

resemble the spectral features of the target speaker with oversmoothed characteristics.

Therefore, in the WaveNet fine-tuning, the optimized parameter set of the WaveNet

model θ̂ is estimated as follows:

θ̂ = argmax
θ

T∏
t=1

P (st|st−p, gt, ŷ
(pred)
t ,θ). (5.8)

The proposed WaveNet fine-tuning procedure with oversmoothed features is illustrated

in the bottom diagram of Fig. 5.2. The conventional procedure to obtain the predicted

target spectral features is described in the next subsection.

5.3.2 Concatenated Mapping with RNN-based Spectral Mod-

els to Obtain Oversmoothed Features

To obtain oversmoothed target spectral features with the same temporal structure

as the target speech waveform, an RNN-based concatenated mappings between the

target and source speakers [35] can be employed. Let the feedforward RNN function

of the source-to-target mapping (STmap) be fλST
(·) and that of the target-to-source

mapping (TSmap) be fλTS
(·). Given a sequence of input spectral feature vectors of the

source speaker x, the sequence of converted spectral feature vectors corresponding to
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Figure 5.3: Flow of the concatenated spectral mappings to enable the WaveNet fine-

tuning (FT) procedure in a VC framework.

the target speaker is given by fλST
(x) = ŷ(conv), for which the optimized set of STmap

parameters λ̂ST is estimated as

λ̂ST = argmin
λST

|ŷ(conv) − y|, (5.9)

where the above distance function follows the L1 loss in the mel-cepstrum domain, as

in Eq. (5.7), and ŷ
(conv)

denotes the time-aligned sequence of the converted spectral

feature vectors. Conversely, given a sequence of input spectral feature vectors of the

target speaker y, the sequence of converted spectral feature vectors corresponding to

the source speaker is given by fλTS
(y) = x̂(conv), for which the optimized set of TSmap

parameters λ̂TS is estimated as

λ̂TS = argmin
λTS

|x̂(conv) − x|, (5.10)

where the above distance function similarly follows the L1 loss in the mel-cepstrum

domain given in Eq. (5.7) and x̂
(conv)

denotes the time-aligned sequence of the converted

spectral feature vectors.

To enable the WaveNet fine-tuning procedure, as illustrated in Fig. 5.3, the above

two mapping functions are simply concatenated so that fλST
(fλTS

(y)) = ŷ(pred). Con-
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sequently, ŷ(pred) inherits the oversmoothed characteristics of the estimated spectral

trajectory with the same temporal structure as the input natural target spectral y,

and accordingly as the waveform of the target speech. However, it can be observed

that the sequence of self-predicted target spectra ŷ(pred), which is used in Eq. (5.8),

is not optimized in Eq. (5.9) or in Eq. (5.10). In other words, there is still incon-

sistency between the oversmoothed features used in the WaveNet fine-tuning and the

concatenated RNN-based spectral mappings. This inconsistency is addressed through

the proposed CycleRNN-based spectral modeling described in the next subsection.

5.3.3 Proposed CycleRNN Spectral Mapping Model to Im-

prove WaveNet Fine-Tuning

In this work, to improve the WaveNet fine-tuning procedure, a CycleRNN spectral

mapping model is proposed, which is optimized using both the cyclic loss, i.e., of

the self-predicted target spectra, and the conversion loss, i.e., of the source-to-target

conversion. Specifically, the CycleRNNmodel consists of two mapping modules, namely

the feedforward RNNs fλc1
(·) and fλc2

(·). In the conversion flow, i.e., to perform source-

to-target conversion, given a sequence of input spectral feature vectors of the source

speaker x, the converted sequence is given by fλc2
(x) = ŷ(conv). On the other hand,

in the cyclic flow, given a sequence of input target spectral feature vectors y, its self-

predicted sequence is given by fλc2
(fλc1

(y)) = ŷ(pred). Hence, the set of optimized

parameters of the CycleRNN model λ̂c = {λ̂c1 , λ̂c2} is estimated as follows:

λ̂c = argmin
λ̂c

|ŷ(conv) − y|+ α|ŷ(pred) − y|, (5.11)

where the above distance functions also follow the L1 loss function in the mel-cepstral

domain as in Eq. (5.7), ŷ
(conv)

denotes the time-aligned sequence of the converted
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Figure 5.4: Proposed CycleRNN-based spectral mapping model, to improve the WaveNet

fine-tuning (FT) procedure, by incorporating not only the conversion, but also the cyclic

losses in the spectral model development.

spectral feature vectors, and α denotes the weight of the cyclic loss.

The training procedure of the CycleRNN spectral mapping model is illustrated in

Fig. 5.4. It can be observed, as given in Eq. (5.11), that the parameters of the

CycleRNN model are optimized according to both the estimation of the converted

spectral feature vectors ŷ(conv) and that of the self-predicted target spectral feature

vectors ŷ(pred). Compared with the simple concatenated mappings in Section 5.3.2,

the proposed CycleRNN model should be more beneficial to the WaveNet fine-tuning

procedure described in Section 5.3.1, which employs the self-predicted target spectral

features in the parameter optimization as in Eq. (5.8). Further, it is also very impor-

tant to consider the weight of the cyclic loss α because the conversion loss and cyclic

loss are in different domains. The conversion loss utilizes a time-warping function, for

example, obtained through DTW, to align the time sequence, whereas the cyclic loss

is a direct framewise comparison that makes it easier to be more accurate, resulting in

the need for a weighting value. This feature is thoroughly investigated in the following

experimental evaluation.
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5.4 Experimental Evaluation

5.4.1 Experimental Conditions

WORLD [22,114] was used to parameterize the speech waveform signal. Framewise

fundamental frequency (F0) values were extracted using Harvest [127] in WORLD.

The spectral envelope of the speech spectrum was computed frame by frame using

CheapTrick [128,129] in WORLD then parameterized into the zeroth through 34th mel-

cepstrum coefficients. As the aperiodicity features, two-dimensional coding parameters

were extracted from the computed aperiodicity values of D4C [130] in WORLD. 1024

points were used for fast Fourier transform analysis. The frame shift was set to 5 ms.

In the WaveNet modeling, a multispeaker WaveNet vocoder [24, 131] was trained

using the speech data of 12 speakers in the VCC 2018 [108] dataset and two speakers

in the CMU Arctic dataset (“bdl” and “slt”). The total number of utterances per

speaker in the VCC 2018 dataset was 81, whereas in the CMU Arctic dataset, it was

1132. As the training set, the final 71 utterances in VCC 2018 and the first 992

utterances in CMU Arctic were used, giving a total of 2, 834 short audio files (with

an average duration of 3.5 s). On the other hand, as the validation set, the first 10

utterances in VCC 2018 and the final 140 utterances in CMU Arctic were used, giving

a total of 420 short audio files. The sampling rate of speech signal from VCC 2018 and

CMU Arctic datasets was 22050 Hz.

The hyperparameters of the WaveNet model are as follows. The length of one di-

lation sequence, i.e., a sequence of residual blocks with causal dilated convolutions,

was 11 (1, 2, 4, . . . , 1024). The number of repeats of the dilation sequence was four,

giving a total of 8190 samples in the receptive field. The numbers of channels for the

residual blocks and skip connections were 128 and 256, respectively. Two convolution
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layers with a kernel size of 3 and dilation sizes of 1 and 3 were used to capture the

context of ±4 frames of auxiliary speech parameters. A trainable upsampling layer

was used after the input convolutions to match the time resolution of the auxiliary pa-

rameters with that of the waveform samples. Dropout [132] layers with 0.5 probability

were used after the upsampling layer and after each repeat of the dilation sequence for

the residual connections. The speech auxiliary features consisted of voiced/unvoiced

(UV) binary decisions, continuous F0 values, 35-dimensional mel-cepstrum parame-

ters, and two-dimensional coded aperiodicity parameters. A batch sequence length

of 8800 waveform samples was used. The model parameters were initialized with the

Glorot [115] method. The Adam algorithm [116] was used to optimize the parameters

with a learning rate of 1e-4. To reduce the errors in the higher-frequency region, a

noise shaping [133] method was used.

To train the RNN-based spectral mapping model, the speech data of only four speak-

ers in the VCC 2018 dataset was used, i.e., “SF1”, “SM1”, “TF1”, and “TM1”, where

“S”, “T”, “F”, and “M” denote source, target, female, and male, respectively. Simi-

larly to in the development of the WaveNet model, the final 71 utterances were used

in the training set and the first 10 utterances were used for the validation set. In

the subjective evaluation (listening test), another 35 utterances provided in the VCC

2018 dataset were used for the evaluation set. For the proposed cyclic RNN architec-

ture (CycleRNN) described in Section 5.3.3, the total number of trained models was

four, i.e., the total number of combinations of target source–target speaker pairs. On

the other hand, for the concatenated RNN mappings (ConcatRNN) described in Sec-

tion 5.3.2, the total number of trained models was eight because the source-to-target

and target-to-source mapping models were trained separately for each speaker pair.

The hyperparameters of the RNN-based spectral models were as follows. The num-
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bers of hidden layers and hidden units for the GRU [126] were 1 and 1024, respectively.

A similar structure of the convolution layers to that in the WaveNet model was used

to capture the context of ±4 frames of input features. Dropout layers with 0.5 prob-

ability were used after the input convolution layers and for the output of the GRU,

i.e., before the output projection layer. The input features consist of not only the

35-dimensional mel-cepstrum parameters but also the V/UV binary decisions, the log

of continuous F0 values, and two-dimensional aperiodicity coding parameters. The

output features consist of only the 35-dimensional mel-cepstrum parameters, i.e., the

network estimates only spectral features. A batch sequence length of 80 speech frames

was used for the CycleRNN models, whereas the utterance batch size was used for

the ConcatRNNs. The network parameters were initialized with the Glorot method

and optimized using the Adam algorithm with a learning rate of 0.0001. To compute

the conversion loss, i.e., of the source-to-target or target-to-source conversion, for the

spectral modeling, time-warping functions were used, which were computed using the

dynamic-time-warping algorithm [134] corresponding to only the speech frames, i.e.,

non-silent frames, of the speech sequences.

To use the multispeaker WaveNet model to generate the converted speech wave-

form, two types of fine-tuning procedure were performed. The first one was by using

the natural (extracted) speech parameters of the corresponding target speaker, which

is basically the conventional fine-tuning [24]. The second one was by using the tar-

get speech parameters that consisted of oversmoothed mel-cepstrum features obtained

through using either the ConcatRNN [35] or the CycleRNN [36]. Hence, in the pro-

posed fine-tuning approach, there was a total of eight fine-tuned WaveNet models, i.e.,

for all four source-target speaker pairs and for both the ConcatRNN and CycleRNN.

Both objective and subjective evaluations were conducted to assess the performance of
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Table 5.1: Mel-cepstral distortion (MCD) [dB] of reconstructed target spectral fea-

tures in training set (Trc) and converted source-to-target spectral features in valida-

tion set (Vcv). Reconstructed target spectral features were used for the WaveNet fine-

tuning, which were estimated either using concatenated target-to-source and source-to-

target mappings (CatRNN) or using the proposed CycleRNN models with three different

weights for the cyclic loss, i.e., 1 (CycRNN0), 0.001 (CycRNN3), and 0.000001 (Cy-

cRNN6).

MCD [dB]
CatRNN CycRNN0 CycRNN3 CycRNN6

Trc Vcv Trc Vcv Trc Vcv Trc Vcv

SF1-TF1 5.25 6.41 2.67 6.43 3.90 6.40 4.04 6.39

SM1-TM1 4.63 5.42 2.23 5.41 3.37 5.41 3.50 5.40

SF1-TM1 4.93 5.93 2.43 5.98 3.54 5.93 3.67 5.93

SM1-TF1 5.31 6.40 2.53 6.43 3.92 6.42 4.07 6.41

the spectral mapping models and the WaveNet fine-tuning approach with the converted

speech waveform samples.

5.4.2 Objective Evaluation

In the objective evaluation, the performance of the spectral mapping models was

assessed by computing the mel-cepstral distortion (MCD) [3] and log-GV distance

(GV). To compute the MCD, the following formula was used:

MCD[dB] =
1

T

T∑
t=1

10

ln 10

√√√√2
34∑
d=1

(ŷt(d)− yt(d))2, (5.12)

where ŷt(d) and yt(d) respectively denote the dth dimension of the converted mel-

cepstrum and that of the natural mel-cepstrum at frame t. To compute the LGD, the
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Table 5.2: Log-GV distortion (LGD) of reconstructed target spectral features in train-

ing set (Trc) and converted source-to-target spectral features in validation set (Vcv).

Reconstructed target spectral features were used for the WaveNet fine-tuning, which

were estimated either using concatenated target-to-source and source-to-target map-

pings (CatRNN) or using the proposed CycleRNN models with three different weights

for the cyclic loss, i.e., 1 (CycRNN0), 0.001 (CycRNN3), and 0.000001 (CycRNN6).

LGD
CatRNN CycRNN0 CycRNN3 CycRNN6

Trc Vcv Trc Vcv Trc Vcv Trc Vcv

SF1-TF1 2.05 1.76 0.70 1.55 1.40 1.68 1.45 1.69

SM1-TM1 1.71 1.37 0.51 1.09 1.06 1.34 1.10 1.35

SF1-TM1 1.82 1.46 0.56 1.16 1.20 1.43 1.24 1.45

SM1-TF1 2.04 1.69 0.62 1.38 1.41 1.73 1.45 1.74

following formula was used:

LGD =
1

D

35∑
d=1

√
(logGV(ŷ(d))− logGV(y(d)))2, (5.13)

where GV(ŷ(d)) and GV(y(d)) respectively denote the global variance of the dth di-

mension of the converted mel-cepstrum and that of the natural mel-cepstrum. The

GV [3] was computed as follows:

GV(y(d)) =
1

N

N∑
n=1

1

Tn

Tn∑
t=1

(yt(d)− yn(d))
2, (5.14)

where yn(d) denotes the mean value of the dth mel-cepstrum parameter of the nth

utterance and the total number of utterances is denoted as N .

The MCD and LGD of both the reconstructed target spectral features in the training

set (Trc) and the converted source-to-target spectral features in the validation set (Vcv)

were computed. The reasons for computing these values were twofold: to measure
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Table 5.3: Absolute measurement difference between mel-cepstral distortion (MCD)

[dB] (|MCD(Vcv)−MCD(Trc)|) of converted source-to-target spectral features in vali-

dation data (Vcv) and reconstructed target spectral features in training data (Trc). The

corresponding error values are given in Table 5.1.

|MCD(Vcv)−
MCD(Trc)|

CatRNN CycRNN0 CycRNN3 CycRNN6

SF1-TF1 1.16 3.76 2.50 2.35

SM1-TM1 0.79 3.17 2.04 1.90

SF1-TM1 1.00 3.55 2.39 2.26

SM1-TF1 1.10 3.90 2.50 2.35

the model accuracy in converting source spectral features into target spectral features

(Vcv) and to monitor the difference between the converted spectral features and the

reconstructed target spectral features (Trc), where the latter has the same temporal

alignment as the target speech because it was used for WaveNet fine-tuning. In other

words, it has to be ensured that the WaveNet model is not fed with overly accurate

or inaccurate features in the fine-tuning phase while still maintaining the conversion

accuracy, which is important in the conversion phase. The models that were compared

were the conventional RNN-based spectral mapping with a concatenated flow to obtain

oversmoothed target spectral features (CatRNN) and the proposed cyclic RNN-based

spectral model with three different cyclic weights: 1 (CycRNN1), 1e-3 (CycRNN3),

and 1e-6 (CycRNN6).

The obtained values of MCD and LGD are respectively given in Tables 5.1 and 5.2.

On the one hand, these results show that there are no large differences in the converted

validation set (Vcv) among the four spectral models, although, CycRNN6 gives the

lowest MCD, whereas CycRNN0 gives the lowest LGD. On the other hand, there are
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Table 5.4: Absolute measurement difference between log-GV distortion (LGD)

(|LGD(Vcv) − LGD(Trc)|) of converted source-to-target spectral features in validation

data (Vcv) and reconstructed target spectral features in training data (Trc). The cor-

responding error values are given in Table 5.2.

|LGD(Vcv)−
LGD(Trc)|

CatRNN CycRNN0 CycRNN3 CycRNN6

SF1-TF1 0.29 0.85 0.27 0.24

SM1-TM1 0.34 0.58 0.28 0.25

SF1-TM1 0.36 0.60 0.23 0.20

SM1-TF1 0.35 0.77 0.32 0.29

noticeable differences in both the MCD and LGD values for the reconstructed target

in the training set (Trc) among the four spectral models. CycRNN0 gives the highest

accuracy (lowest MCD) and the highest trajectory variance (least oversmoothed/lowest

LGD) amoung the four models. As the cyclic weight is decreased to 1e-3 (CycRNN3)

and 1e-6 (CycRNN6), lower accuracy and increased oversmoothing can be seen for the

Trc features. The lowest accuracy and the most oversmoothed Trc were obtained with

CatRNN, which is reasonable because Trc is not directly optimized in the CatRNN

spectral model. Although it seems that CycRNN0, i.e., with a cyclic weighting value

of 1, gives the best values, what is actually required is a balanced performance between

Vcv and Trc. In other words, reasonably small differences are needed between the MCD

and LGD values for these two features.

Therefore, to emphasize the reason for carrying out the objective evaluation, the

absolute differences between the MCD values of Vcv and Trc and between the LGD

values of Vcv and Trc were computed. Although these values are already implied

within Tables 5.1 and 5.2, to make them directly visible, the absolute differences are
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Table 5.5: Mean Opinion Score (MOS) for naturalness (1 to 5 scale) using conventional

DiffGV waveform generation, conventional WaveNet (WN), and proposed WaveNet

fine-tuning (WNFT). WN-NoGV denotes the use of plain converted spectral features.

WN-DiffGV denotes the use of postprocessed spectral features with the DiffGV-based

method. WNFT models were fine-tuned with either concatenated RNN (Cat) or the

proposed CycleRNN (Cyc). The weight of the cyclic loss in CycleRNN was 1 (0), 0.001

(3), or 0.000001 (6). NoGV spectral features were used for WNFT models. S-Gender

and X-Gender denote same-gender and cross-gender conversions, respectively. ± de-

notes the 95% confidence interval. [·] denotes a system with a statistically significantly

lower score than the highest score in each conversion category.

MOS of

Naturalness
DiffGV WN-NoGV WN-DiffGV WNFT-Cat WNFT-Cyc0 WNFT-Cyc3 WNFT-Cyc6

All Pairs [2.53±0.20] [2.34±0.13] [2.78±0.15] [3.23±0.17] [2.96±0.17] [3.29±0.15] 3.50±0.14

S-Gender 3.39±0.23 [2.56±0.19] [2.96±0.24] 3.51±0.24 [3.33±0.23] 3.56±0.20 3.69±0.19

SF1-TF1 3.40±0.32 [2.20±0.22] 3.23±0.37 3.25±0.35 [2.75±0.27] 3.43±0.34 3.58±0.28

SM1-TM1 [3.38±0.33] [2.93±0.28] [2.70±0.29] 3.78±0.32 3.90±0.27 3.70±0.22 3.80±0.27

X-Gender [1.68±0.21] [2.13±0.18] [2.60±0.19] [2.94±0.24] [2.60±0.24] [3.01±0.21] 3.31±0.21

SF1-TM1 [1.35±0.21] [2.43±0.25] [2.43±0.29] 3.13±0.36 2.93±0.37 2.95±0.31 3.30±0.29

SM1-TF1 [2.00±0.34] [1.83±0.22] [2.78±0.26] [2.75±0.31] [2.28±0.28] 3.08±0.29 3.33±0.31

respectively given in Tables 5.3 and 5.4. The results show that CatRNN gives the lowest

absolute difference between the MCD of Vcv and Trc. This means that considering

the conversion performance (Vcv accuracy) is not particularly different among the four

spectral models, CatRNNmight provide the oversmoothed target (Trc) that is closest to

the converted features for the WaveNet fine-tuning. However, this condition may have

the disadvantage of overly poorly reconstructed features, resulting in an overestimation

in the WaveNet fine-tuning procedure. If this assumption holds, it means that the

absolute MCD difference between Vcv and Trc should not be too small if Vcv is not
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Table 5.6: Mean Opinion Score (MOS) of naturalness (1 to 5 scale) for natural wave-

form samples of source and target speakers. In the evaluation, the original waveforms

were mixed with the converted waveforms, where the MOS values for the converted

waveforms are given in Table 5.5.

MOS of

Naturalness
SF1 SM1 TF1 TM1

Original 4.83±0.14 4.93±0.09 4.90±0.10 4.83±0.12

particularly accurate (which is true in this case). In other words, CycRNN3 and

CycRNN6 might give a better reconstructed target (Trc) owing to their intermediate

absolute difference values. On the other hand, the absolute differences between the

LGD values of Vcv and Trc show that CycRNN6 gives the smallest difference between

the converted and reconstructed spectra in the oversmoothness measurement. The

latter result might allow CycRNN6 to provide a balanced performance in spectral

modeling that considers both the WaveNet fine-tuning phase and the conversion phase.

Meanwhile, it can be clearly seen that CycRNN0 gives the largest absolute difference

for both MCD and LGD among the four models. This analysis of the results of the

objective evaluation supports the results of the perceptual evaluation given in the next

subsection.

5.4.3 Subjective Evaluation

In the subjective evaluation, a mean opinion score (MOS) test was conducted to

evaluate the naturalness of the converted speech waveforms and a speaker similarity

test to evaluate the accuracy of the converted speech with respect to the natural tar-
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Table 5.7: Results of speaker similarity score (%) aggregated from “same sure” and

“same not sure” decisions using conventional DiffGV waveform generation, conven-

tional WaveNet (WN), and proposed WaveNet fine-tuning (WNFT). WN-NoGV de-

notes the use of plain converted spectral features. WN-DiffGV denotes the use of post-

processed spectral features with the DiffGV-based method. WNFT models were fine-

tuned with either concatenated RNN (Cat) or the proposed CycleRNN (Cyc). The

weight of the cyclic loss in CycleRNN was 1 (0), 0.001 (3), or 0.000001 (6). NoGV

spectral features were used for WNFT models. S-Gender and X-Gender denote same-

gender and cross-gender conversions, respectively. [·] denotes a system with a statisti-

cally significantly lower score than the highest score in each conversion category.

Speaker Similarity

Scores (%)
DiffGV WN-NoGV WN-DiffGV WNFT-Cat WNFT-Cyc0 WNFT-Cyc3 WNFT-Cyc6

All Pairs [47.50] [62.50] [58.33] 66.67 [62.50] [68.33] 78.33

S-Gender [58.33] [70.00] [65.00] 73.33 [66.67] [70.00] 81.67

SF1-TF1 60.00 [80.00] 80.00 70.00 [73.33] 66.67 86.67

SM1-TM1 [56.67] [60.00] [50.00] 76.67 [60.00] 73.33 76.67

X-Gender [36.67] [55.00] [51.67] 60.00 [58.33] 66.67 75.00

SF1-TM1 [23.33] [36.67] [43.33] 60.00 56.67 60.00 73.33

SM1-TF1 [50.00] 73.33 60.00 60.00 60.00 73.33 76.67

get speech. Seven different systems were employed to generate the converted speech

waveforms: direct waveform modification using the spectrum differential [4] and GV [3]

postfilter (DiffGV), which was similar to the baseline of VCC 2018 [117]; WaveNet-

based generation with plain converted spectra (WN-NoGV); WaveNet-based generation

with postprocessed converted spectral features using the DiffGV-based method (WN-

DiffGV) [15], which was the VC system described in the previous Chapter 4 for VCC

2018; WaveNet fine-tuned (WNFT) with oversmoothed target spectral features esti-

mated using concatenated RNN mappings (WNFT-Cat) [15]; and the WNFT-based
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Table 5.8: Speaker similarity scores (%) for original waveform samples with respect to

each of the target speakers TF1 and TM1. In the evaluation, these pairs were mixed

with the pairs using converted audios, where the similarity scores for the converted

audios are given in Table 5.7.

Speaker Similarity

Scores (%)
TF1 TM1

SF1 3.33 0.00

SM1 0.00 0.00

TF1 90.00 -

TM1 - 86.67

model with the CycleRNN framework [36] using weights of cyclic loss of 1e0 (WNFT-

Cyc0), 1e-3 (WNFT-Cyc3), and 1e-6 (WNFT-Cyc6). The converted speech waveforms

were generated from the conversion of four speaker pairs: source female to target fe-

male (SF1-TF1), source male to target male (SM1-TM1), source female to target male

(SF1-TM1), and source male to target female (SM1-TF1). This resulted in a total

of 28 different combinations of systems and speaker pairs. Note that in the DiffGV-

based waveform generation, for cross-gender conversions, i.e., SF1-TM1 and SM1-TF1,

the vocoder-based excitation was used, whereas waveform generation for same-gender

conversions was vocoder-free. Also, for WN-NoGV and WN-DiffGV, the multispeaker

WaveNet model was fine-tuned with the natural spectral parameters of the correspond-

ing target speaker.

In the MOS test, each listener was given one audio stimuli at a time then was asked to

judge its naturalness based on a Likert five-scale score, i.e., 1: completely unnatural,

2: mostly unnatural, 3: equally natural and unnatural, 4: mostly natural, and 5:

completely natural. On the other hand, in the speaker similarity test, each listener was
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given a pair of audio stimuli then was asked to judge whether they were produced by

the same speaker. The similarity decision was based on two main scores, i.e., “same”

or “different”, with two confidence measures, i.e., “sure” or “not sure”. The number of

distinct test utterances per combination of systems and speaker pair in the MOS test

was four, whereas in the similarity test it was three, which were randomly selected for

each listener from a testing set consisting of 35 utterances. The number of listeners

was 10. Natural speech waveforms were also included in both the MOS and similarity

tests with the same number of distinct utterances per speaker in each corresponding

test. This configuration gave a total of 128 audio samples to be evaluated in the MOS

test and 102 audio samples to be evaluated in the similarity test for each listener. To

summarize the results of the MOS test, these values were computed: the average value

in each conversion pair/category; the 95% confidence interval of the sample average;

and the p-value using the Mann–Whitney U test [135] with α < 0.05 (two-tailed) to

infer the statistical significance of the best system in each conversion pair/category.

To summarize the similarity test, the total similarity score was computed by summing

the “same-sure” and the “same-not sure” decisions. Similarly, the statistical inference

of the best system in each conversion pair/category was computed using the Mann–

Whitney U test with α < 0.05 (two-tailed).

The results of the MOS test are given in Tables 5.5 and 5.6 for the converted and

natural speech waveforms, respectively. The results show that the WaveNet model fine-

tuned with oversmoothed features generated through the proposed CycleRNN spectral

model with a weight of cyclic loss of 1e-6 (WNFT-Cyc6) yields a statistically sig-

nificantly higher score than the other conversion categories. From the conversion

pairs/categories, it can be observed that the proposed WNFT-Cyc6 system always

yields better and more consistent performances, usually having a significant difference,
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than the other systems, especially compared with the conventional WaveNet model

fine-tuned with natural features (WN-NoGV and WN-DiffGV) and DiffGV systems.

The WaveNet fine-tuned with oversmoothed features from concatenated spectral map-

pings (WNFT-Cat) also gives reasonable naturalness performance, as can be predicted

from the objective measurements, and more consistent results than WNFT-Cyc0, with

similar performance to WNFT-Cyc3 but usually lower performance than WNFT-Cyc6.

Note that for DiffGV-based waveform generation, because of the avoidance of vocoder-

based excitation in the same-gender conversions, much better naturalness performance

than that for cross-gender conversions can be observed. The proposed WNFT-Cyc6

also shows strong cross-gender conversion performance, especially for male-to-female

conversion, compared to the other systems. In short, the results show significantly

improved naturalness of the converted speech waveforms for the proposed WaveNet

fine-tuning using the CycleRNN-based spectral mapping with balanced spectral map-

ping accuracy, i.e., with a cyclic weight of 1e-6 in this work.

The results of the similarity tests for the converted and natural speech waveforms

are given in Tables 5.7 and 5.8, respectively. Similarly, to the naturalness performance

obtained from the MOS test, the proposed WNFT-Cyc6 system gives higher perfor-

mance for all conversion categories, mostly with statistical significance, than the other

systems. This particularly applies especially when it is compared with the conven-

tional WaveNet fine-tuning with natural target features (WN-NoGV and WN-DiffGV)

as well as the DiffGV-based waveform generation. Note that owing to the excitation

of the original waveform, DiffGV gives the worst similarity performance, even though

it gives quite high naturalness for same-gender conversions. These speaker similar-

ity test results also have a similar tendency when comparing the results for different

weights of cyclic loss, i.e., 1e0 (WNFT-Cyc0), 1e-3 (WNFT-Cyc3), and 1e-6 (WNFT-
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Cyc6), where WNFT-Cyc6 yields the best and most consistent performance, followed

by WNFT-Cyc3 then WNFT-Cyc0. The importance of tuning the weight of the cyclic

loss is again emphasized by the similarity performance for the latter two weights,

where the WaveNet model fine-tuned with oversmoothed features from concatenated

mappings (WNFT-Cat) yields a better and more consistent performance than WNFT-

Cyc0. The WNFT-Cat system indeed gives a reasonable performance compared with

the proposed WNFT-Cyc6, even though its overall similarity scores are still inferior to

those of the WNFT-Cyc6. Moreover, only the proposed WNFT-Cyc6 gives accuracy

consistently higher than 70% for both of same-gender and cross-gender conversion from

all speaker pairs, which allows for concluding the effectiveness of the proposed method

in improving the speaker conversion accuracy of converted speech waveforms. All audio

samples are available at http://bit.ly/2RkLmXC.

5.5 Discussion

A thorough objective and subjective experiments have been presented to assess the

proposed CycleRNN spectral modeling in performing WaveNet fine-tuning in a VC

framework. A correlation was observed between the objective measurements of the

accuracy and variance of the spectral trajectory and the subjective perceptual results.

The CycleRNN with a cyclic loss weight of 1e-6 (CycRNN6) gives the most balanced

values of MCD and LGD as shown in Section 5.4.2. It also gives the best overall per-

ceptual performance for both naturalness and speaker conversion accuracy as shown

in Section 5.4.3. Both performances are followed by those of the concatenated RNN

mappings (CatRNN), CycleRNN with a cyclic loss weight of 1e3 CycRNN3), and Cy-

cleRNN with a cyclic loss weight of 1e0 (CycRNN0). These results demonstrate the

importance of monitoring objective measurements while developing a spectral mapping
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model in this framework because the same spectral features in WaveNet fine-tuning and

in the conversion phase are not used. Further, it would be interesting to determine

how well the proposed CycleRNN framework performs with the use of smaller cyclic

loss weights, such as 1e-7 and 1e-8. These two values are at the lower limit in the

experimental configuration of this work because with cyclic loss weight of 1e-9 and

smaller, the cyclic loss does not converge to reasonable values.

Another factor that might be at least as important as the spectral modeling is the

WaveNet fine-tuning phase. In this procedure, owing to the limited amount of training

data of the target speaker in the experiments of this work, the overfitting condition has

to be handled with care. This problem is overcome through the use of dropout connec-

tions with suitable locations for WaveNet modeling. Further, the use of convolutional

layers to capture contextual frames of input features is also important to improve the

generated waveform. The monitoring of WaveNet loss, i.e., binary cross-entropy, is

crucial in determining the training duration. Thus, it is highly recommended that sep-

arate development and evaluation sets are used to monitor the fine-tuning procedure.

Finally, it can be straightforwardly observed that the proposed technique within this

work can be easily extended to various other neural waveform generators. Although,

the use of more data can greatly alleviate the overfitting problem, the achievements of

this work through the use of a limited amount of data will generally be beneficial for

other researchers.

5.6 Conclusion

In this work, a novel parallel voice conversion (VC) framework based on the cyclic

structure of a recurrent neural network (CycleRNN) and a finely tuned WaveNet

vocoder has been presented. The CycleRNN spectral mapping model utilizes mul-



122 5 Voice Conversion with Cyclic Recurrent Neural Network and Finely TunedWaveNet Vocoder

tiple losses (multitask learning model), which are the conversion (source-to-target) loss

and cyclic (reconstructed target) loss. The CycleRNN architecture consists of two

concatenated RNN modules where the reconstructed target spectral features are ob-

tained by feeding the original target spectral to the first RNN then the second RNN.

In contrast, in the conversion the input source features are fed to the second RNN

module to obtain the converted source-to-target features. Different than the simple

concatenated spectral mapping flow with the RNN (CatRNN), where two mapping

modules are separately trained, i.e., target-to-source and source-to-target, in the pro-

posed CycleRNN, the synchronization of the reconstructed target and the converted

features owing to the use of the corresponding losses can be ensured. In experiments,

it has been demonstrated that the proposed CycleRNN model with weight of the cyclic

loss of 1e-6 (CycRNN6) gives statistically significantly better overall naturalness and

conversion accuracy than the conventional direct waveform modification with global

variance (DiffGV) waveform generation, the conventional WaveNet fine-tuning with

natural target spectral features, CycleRNN with cyclic loss weights of 1e0 and 1e-3,

and CatRNN. The experimental results also demonstrate the importance of both tun-

ing the cyclic loss weight and monitoring with objective measurements while developing

the statistical model, which in the experiments of this work were in agreement with

the subjective perceptual results. In future work, the proposed concept to other neural

waveform generators, such as WaveNet vocoder with shallow architecture [136] and

nonparallel neural vocoder [137], and to non-parallel VC [29].



6 Non-Parallel Voice Conversion

with Cyclic Variational

Autoencoder

6.1 Introduction

In the previous two chapters, voice conversion (VC) frameworks have been presented,

i.e., neural-network (NN)-based spectral and waveform modeling for VC in Chapter 4

and high-quality VC with fine-tuned WaveNet vocoder using CycleRNN spectral map-

ping in Chapter 5. Indeed, by looking back to other related works, within two decades,

many speech applications have been realized by employing the VC framework, such as

creation of speech database with various voice characteristics [57], singing voice con-

version [4], recovery of impaired speech signal [5, 6], expressive speech synthesis [7, 8],

body-conducted speech processing [9, 10], and articulatory controllable speech modifi-

cation [18]. In this chapter, for improving the flexibility in the development of related

applications, a VC technique that can be realized using easily available speech data,

such as with non-parallel speech dataset, is presented.

Basically, in general, there are two main VC frameworks, non-parallel VC and paral-

lel VC. In the non-parallel VC, it is not straightforward to measure the correspondence

between source spectral features and the target spectral features, owing to the in-

availability of optimization with paired utterances. On the other hand, in a parallel
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VC [2,3], because of the availability of the paired utterances, their correspondence can

be directly achieved by performing time-alignment, such as with dynamic-time-warping

(DTW) algorithm. However, not all of the time a proper parallel dataset, i.e., where

the source and the target speakers utter the same set of sentences, can be collected

for the development of a VC system. Consequently, as the main focus in this work,

a consideration for a reliable non-parallel VC using data-driven statistical modeling

would be highly beneficial for real-life applications.

Indeed, the challenge in developing the non-parallel spectral conversion model has at-

tracted many works within the recent years, such as: with the use of clustered spectral

matching algorithms [138, 139]; with adaptation/alignment of speaker model param-

eters [140, 141]; with restricted Boltzmann machine [64]; with generative adversarial

networks (GAN)-based methods [28, 142]; and with variational autoencoder (VAE)-

based frameworks [38, 143–145]. In this work, the focus is on the use of VAE-based

system, owing to its potential in employing latent space to represent common hidden

aspects of speech signal, between different speakers, e.g., phonetical attributes. Fur-

ther, its implementation can be flexibly realized through any network architectures,

such as with convolutional or recurrent models.

In a VAE framework [37], a latent space, usually with a Gaussian prior, is used for

encoding a set of input features. In a VAE-based VC [38], additional speaker-coding

features are used, alongside the encoded latent features, to reconstruct the spectral

features in the generation phase. Speaker-code associated with the source (original)

speaker is used to estimate the reconstructed spectra, while speaker-code associated

with a desired target speaker is used to estimate converted spectra. However, due to

the non-parallel condition, the spectral model parameters are optimized with respect

only to the reconstructed spectra. Hence, because of the only reliance in speaker-code
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capability to disentangle speaker identity, the performance of a conventional VAE-based

VC is still insufficient.

In this work, to improve VAE-based VC, a cycle-consistent mapping flow [146] is

proposed to be used, i.e., CycleVAE-based VC, that indirectly optimizes the conver-

sion flow by recycling the converted spectral features. Specifically, in the CycleVAE,

the converted features are fed-back into the system to generate corresponding cyclic

reconstructed spectra that can be directly optimized. The cyclic flow can, then, be con-

tinued by feeding the cyclic reconstructed features back into the system. Therefore, the

conversion flow, i.e., the estimation of converted spectra, is indirectly considered in the

computation of both the reconstruction losses and the regularizations of latent space.

In the experiments, it has been demonstrated that the proposed CycleVAE-based VC

shows higher correlation degree of latent features, i.e., more similar latent attributes

between different speakers (possibly within phonetical space), and higher accuracy of

converted spectra. Perceptual evaluation also shows significant improvements in both

quality and accuracy of converted speech, especially when the speaker identities are

considerably distant, such as in cross-gender conversions.

6.2 Proposed CycleVAE-based VC

In this work, to improve the VAE-based VC, as illustrated in Fig. 6.1, CycleVAE

is proposed, which is capable of recycling the converted spectra back into the system,

so that the conversion flow is indirectly considered in the parameter optimization.

A similar idea has also been proposed as a cycle-consistent flow in a self-supervised

method for visual correspondence [146].

In the proposed CycleVAE-based VC, the parameter optimization is defined as fol-
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Figure 6.1: Flow of the conventional VAE-based (upper-part) and the proposed

CycleVAE-based (whole diagram) VC. Converted input features include converted ex-

citation features, such as linearly transformed F0 values. One full-cycle includes the

estimation of both reconstructed and cyclic reconstructed spectra. Each of encoder and

decoder networks are shared for all cycles.

lows:

{θ̂, ϕ̂} = argmax
θ,ϕ

T∑
t=1

L(θ,ϕ,X t, c
(x), c(y)), (6.1)

where
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L(θ,ϕ,X t, c
(x), c(y)) =

N∑
n=1

−DKL(qϕ(zn,t|Xn,t)||pθ(zt))

−DKL(qϕ(zn,t|Ŷ n,t)||pθ(zt))

+ Eqϕ(zt|Xt)
[log pθ(s

(x)
n,t = s

(x)
t |zn,t, c(x))]

+ Eqϕ(zt|Ŷ t)
[log pθ(s

(x|x)
n,t = s

(x)
t |zn,t, c(x))], (6.2)

qϕ(zn,t|Ŷ n,t) = N (zn,t; f
(µ)
ϕ (Ŷ n,t), diag(f

(σ)
ϕ (Ŷ n,t)

2)), (6.3)

pθ(s
(x|x)
n,t |zn,t, c(x)) ≈ N (s

(x)
t ; gθ(ẑ

(y|x)
n,t , c(x)), I), (6.4)

ẑ
(y|x)
n,t = f

(µ)
ϕ (Ŷ n,t) + f

(σ)
ϕ (Ŷ n,t)⊙ ϵ s. t. ϵ ∼ N (0, I), (6.5)

where s
(x)
n,t and s

(x|x)
n,t are random variables, s

(x)
t is an observed value, and

Ŷ n,t = [ê
(y|x)⊤
t , ŝ

(y|x)⊤
n,t ]⊤, (6.6)

ŝ
(y|x)
n,t = gθ(ẑ

(x)
n,t , c

(y)), (6.7)

ŝ
(x)
n,t = gθ(ẑ

(x)
n,t , c

(x)), (6.8)

Xn,t = [e
(x)⊤

t , ŝ
(x|x)⊤
n−1,t ]

⊤, (6.9)

ŝ
(x|x)
n,t = gθ(ẑ

(y|x)
n,t , c(x)). (6.10)

The index of the n-th cycle is denoted as n. The total number of cycle is N . Ŷ n,t

denotes the converted input features at n-th cycle, ê
(y|x)
t denotes the converted source-

to-target excitation features, e.g., linearly transformed F0, ŝ
(x|x)
n,t denotes the cyclic

reconstructed spectra at n-th cycle, and at n = 1, ŝ
(y|x)
1,t = ŝ

(y|x)
t , ŝ

(x)
1,t = ŝ

(x)
t , ẑ

(x)
1,t = ẑ

(x)
t

and X1,t = X t. Hence, in the proposed CycleVAE-based VC, the conversion flow is

indirectly optimized through the consideration of the converted spectra ŝ
(y|x)
n,t in each

n-th cycle.
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6.3 Experimental Evaluation

6.3.1 Experimental conditions

A subset of the Voice Conversion Challenge (VCC) 2018 [108] dataset was used,

which included four speakers, i.e., SF1, SM1, TF1, and TM1. The speaker notations

are as follows: S denotes source speaker, T denotes target speaker, F denotes female

speaker, and M denotes male speaker. The total number of utterances in the training

and the testing sets were 81 and 35, respectively. The average length per one audio

sample is about 3.5 seconds. To develop a non-parallel training dataset, the first 40

utterances were used for corresponding source speaker, while the last 41 were for the

target speaker.

WORLD [22] package was used to perform speech analysis. As the spectral enve-

lope parameters, the zeroth through 34th mel-cepstrum coeficients converted from the

spectral envelope were used, which were extracted frame-by-frame. As the excitation

features, log-scaled of continuous F0 also including an unvoiced/voiced binary decision

feature, and 2-dimensional aperiodicity coding coefficients were used. To perform ex-

citation conversion, mean and variance transformation [3] was performed with respect

to the log-scaled F0 values. The sampling rate of the speech signal was 22,050 kHz.

The number of FFT points was 1024. The frame shift was set to 5 ms.

To develop the spectral networks, a recurrent neural network (RNN)-based model

was used, which was as follows: dilated convolutional layers were used, to capture the

context of -4/+4 input frames, with a kernel size of 3 and 2 layers of 1 and 3 dilation,

respectively; gated recurrent unit (GRU) [126] was used with 1024 hidden units and

1 hidden layer; a linear output layer was used; output frame was also fed-back into

GRU. Fixed normalization and denormalization layers were used before convolutional
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Figure 6.2: Mel-cepstral distortion (mcd) of reconstructed (rec) spectra, estimated using

the conventional VAE-based (cyc0) and the proposed CycleVAE-based (cyc3) VC, dur-

ing 180 training epochs, for training (train) and testing (test) sets. mcds were computed

with only the speech frames of the input speech.

and after output layers, respectively, that were set with the statistics of training data.

Dropout [132] layers were used with 0.5 probability after convolutional and GRU layers.

Network parameters are initialized with Glorot [115] method, and optimized using

Adam [116] with 0.0001 learning rate. A batch-frame size of 80 was used.

Four one-to-one spectral models were developed for each of the conventional VAE-

and the proposed CycleVAE-based VC, with respect to the four corresponding speaker

pairs, i.e., SF1-TF1, SF1-TM1, SM1-TF1, and SM1-TM1. To code the speaker identity,

a binary decision value was used. Search of hyperparameters was conducted by varying

the number of latent dimensions to 8, 16, 32, 50, and 64, and the number of cycles

N , in Eq. (6.5), to 1, 2, 3, 4, and 5. The optimum number of latent dimensions for
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Figure 6.3: Mel-cepstral distortion (mcd) of converted source-to-target (cv-st) spectra,

estimated using the conventional VAE-based (cyc0) and the proposed CycleVAE-based

(cyc3) VC, during 180 training epochs, for training (train) and testing (test) sets. mcds

were computed, through DTW alignment, with only the speech frames of corresponding

source and target speech.

both VAE and CycleVAE was 16. The optimum number of cycles for CycleVAE was

3. Objective evaluation was performed to measure the accuracy of the reconstructed

and the converted spectra, and the degree of latent features correlation. Another

RNN-based parallel spectral conversion models were developed as the upper bound in

measuring conversion accuracy. Subjective evaluation was performed to perceptually

measure the quality and the accuracy of converted speech between conventional VAE

and proposed CycleVAE 1.

1Implementation is being made available at https://github.com/patrickltobing/cyclevae-vc
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Table 6.1: Mel-cepstral distortion (MCD) of converted spectra (Cv) and GV-postfiltered

[3] converted spectra (PF) with the conventional VAE, the proposed CycleVAE, and

parallel spectral modeling as the lower bound, for each speaker-pair conversions. (S:

source speaker; T: target speaker; F: female speaker; M: male speaker; Init. denotes

the initial MCD values.)

MCD [dB] Init.
VAE CycleVAE Parallel

Cv PF Cv PF Cv PF

SF1-TF1 8.18 6.41 6.95 6.24 6.78 5.92 6.42

SF1-TM1 8.73 6.49 7.03 5.97 6.49 5.60 6.03

SM1-TF1 9.06 6.83 7.42 6.29 6.78 6.00 6.43

SM1-TM1 7.68 5.74 6.15 5.71 6.10 5.36 5.72

6.3.2 Objective evaluation

Mel-cepstral distortion (MCD) [3] was used to measure the accuracy of both the

reconstructed and the converted spectra. Their values are respectively charted, dur-

ing 180 training epochs, in Figs. 6.2 and 6.3. It can be observed that the proposed

CycleVAE-based VC yields higher accuracy of converted spectra and lower accuracy

of reconstructed spectra compared to the conventional VAE. This trend is somewhat

inline with [147], where reconstruction performance is not a proper measure for a better

disentanglement of speaker identity (or for better conversion performance). Moreover,

MCD values of converted spectra were also computed after applying global variance

(GV)-postfilter [3], as given in Table 6.1. The result shows that the proposed Cy-

cleVAE is more suited to additional postfiltering phase compared to the conventional

VAE, especially when the speaker identities are considerably distant.

To measure the condition of the latent features, the cosine similarities between the

latent features of the source and of the target speaker within the same utterances



132 6 Non-Parallel Voice Conversion with Cyclic Variational Autoencoder

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  20  40  60  80  100  120  140  160  180

C
o
si

n
e
 S

im
il

a
ri

ty

Index Training Epoch - 1

lat-train-cosine-cyc0
lat-test-cosine-cyc0
lat-train-cosine-cyc3
lat-test-cosine-cyc3

Figure 6.4: Cosine similarity (cosine) between latent features of corresponding source

and target speech, encoded with the conventional VAE-based (cyc0) and the proposed

CycleVAE-based (cyc3) VC, during 180 training epochs, for training (train) and testing

(test) sets. cosines were computed, through DTW alignment, with only the speech

frames of source and target speech.

were computed, which were charted during 180 training epochs, as in Fig. 6.4. It

can be clearly seen that the proposed CycleVAE-based VC generates latent features

with higher correlation degree compared to conventional VAE. As studied in [148],

higher cosine similarities would be produced by latent attributes that represent either

equal phonetic space or equal speaker identities. Hence, CycleVAE is more likely to

give latent representations that are closer to phonetic domain due to different speaker

identities.
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Table 6.2: Result of preference test on speech quality for all, same-gender (S-Gender),

and cross-gender (X-Gender) conversion categories using the conventional VAE and

the proposed CycleVAE-based VC. CI denotes the 95% confidence interval of the sam-

ple mean. p-values were computed using the two-tailed Mann–Whitney U-test with

α < 0.05. Bold indicates statistically significant better scores.

Quality

Preference
VAE CycleVAE CI p-value

All 40.83% 59.17% ±6.27% 6.01e-05

S-Gender 52.50% 47.50% ±9.07% 4.40e-01

X-Gender 29.17% 70.83% ±8.25% 1.18e-10

6.3.3 Subjective evaluation

Perceptual evaluation was performed to compare the quality and the conversion accu-

racy of converted speech, between the conventional VAE- and the proposed CycleVAE-

based VC, by conducting two forced-choice preference tests. In the quality preference

test, each listener was presented with two audio stimuli at a time, and was asked to

choose a prefered audio by considering both speech naturalness and intelligibility. In

the similarity preference test, i.e., to measure the conversion accuracy, each listener

was given two audio stimulis, and a reference audio with different utterance, then, was

asked to choose a prefered audio that has the closer speaker characteristics to the ref-

erence speaker. The numbers of distinct utterances in quality and similarity tests were

6 and 5, respectively, which were randomly chosen from the testing set. Converted

speech using parallel spectral models were also included. GV-postfiltered converted

spectra was used. The number of listeners was 10.
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Table 6.3: Result of preference test on speaker similarity (Spk. Sim.) for all, same-

gender (S-Gender), and cross-gender (X-Gender) conversion categories using the con-

ventional VAE and the proposed CycleVAE-based VC. CI denotes the 95% confidence

interval of the sample mean. p-values were computed using the two-tailed Mann–

Whitney U-test with α < 0.05. Bold indicates statistically significant better scores.

Spk. Sim.

Preference
VAE CycleVAE CI p-value

All 39.00% 61.00% ±6.82% 1.11e-05

S-Gender 46.00% 54.00% ±9.94% 2.59e-01

X-Gender 32.00% 68.00% ±9.30% 3.81e-07

The results of quality and similarity preference tests are given in Tables 6.2 and

6.3, respectively. These results show that the proposed CycleVAE-based VC signif-

icantly improves the overall quality and accuracy of converted speech, especially for

cross-gender (SF1-TM1, SM1-TF1) conversions, compared to conventional VAE. Their

performances for same-gender conversions are statistically similar. This tendency is

inline with the objective measurements shown in Table 6.1, where the conventional

VAE-based VC suffers from degradation in cross-gender conversions and the Cycle-

VAE significantly improves them. All audio samples and complete perceptual results

can be accessed at http://bit.ly/2Wg3oIt.

6.4 Conclusions

A novel framework to improve conventional VAE, for a non-parallel VC, by using

a cycle-consistent flow, i.e., the CycleVAE, has been presented. Specifically, the con-
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verted spectra, which is not directly optimized, is recycled back into the system, to

generate cyclic reconstructed spectra that can be directly optimized. The cyclic flow

can be continued by feeding the cyclic reconstructed features back into the system. The

experimental results demonstrate that the proposed CycleVAE-based VC yields higher

correlation degree of latent features and more accurate converted spectra, while signif-

icantly improves the quality and conversion accuracy of the converted speech. Future

work includes development of many-to-many VC, and incorporates the use of discrete

latent space [149], better prior [150], i-vector [151], additional classifier/discriminator

network [145], duration modeling with recurrent Markov structure [152,153], and neural

waveform generator [14,136] to produce naturaly sounding converted speech [26,36].





7 Conclusions

7.1 Summary of the Thesis

As an essential element in daily-life and communication, human voice (speech) is

inevitably versatile and valuable. Automation of speech processing through the use of

recent progress in machine learning techniques will definitely be a fine contribution for

the society. As within this thesis, this may also include investigation on techniques

for achieving high-quality and flexible voice conversion. Using a voice conversion, one

can perform a transformation of the voice characteristics from a source speaker into

that of a target speaker. Such framework will indeed be beneficial in various real-

world applications including, but not limited to, entertainment, education, medical,

and within the speech research area itself. To achieve high-quality and flexible voice

conversion framework, within this thesis, specifically, statistical techniques for spectral

mapping and waveform modeling have been presented.

In this thesis, two main approaches have been studied to achieve spectral mapping

modeling. First is the use of articulatory information for developing a voice modifica-

tion system with intuitive/flexible manipulation of the positions of speech organs. This

has the potential to be developed into voice conversion by the modeling of the vocal-

tract shape, though it is not straightforward to obtain articulatory data for statistical

model development. On the other hand, the second method is to perform mapping

of spectral envelope parameters between source and target speakers, which can be ob-
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tained in a more straightforward/flexible manner from a speech signal compared to the

articulatory data. Further, ultimate flexibility in the development of voice conversion

system has also been presented by means of nonparallel spectral mapping modeling,

where source and target speakers do not have to utter a same set of sentences, i.e.,

arbitrary speech data can be used.

Finally, to achieve high-quality voice conversion, statistical waveform modeling based

on neural network (neural vocoder), particularly WaveNet vocoder is investigated. The

advantage of data-driven neural vocoder is the concept of data-driven approach in its

development, which does not use any assumptions on speech production mechanism,

unlike its conventional rule-based vocoder counterpart. Hence, the quality of the syn-

thetic speech can be close to that of the natural speech, provided that the statistical

model is well-trained/developed. In this thesis, this advantage of neural vocoder is

exploited for the use of voice conversion, especially its capability of performing com-

pensation of mismatches between the neural vocoder model and the spectral mapping

model. Two main approaches have been investigated to address mismatches between

spectral and waveform model, i.e., with a postprocessing method and with direct fine-

tuning approach of the neural vocoder, on which they have proved to surpass the

performance of the conventional voice conversion with vocoder-based generation to

ultimately achieve high-quality converted speech output.

Chapter 2 has described the general overview of the thesis and its related works.

These include: the acoustic-to-articulatory inversion mapping problem and articulatory-

to-acoustic production mapping problem for the development of voice modification with

articulatory mapping and manipulation; the works on voice conversion framework and

its several issues related to nonparallel spectral mapping modeling, and speech quality

degradation due to the oversmoothing and due to the use of vocoder-based excitation
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generation assumption; and lastly, recent works on the neural vocoder framework, such

as WaveNet vocoder, which is capable of producing natural sounding synthetic speech,

as well as its possible limitation when used in a voice conversion system.

In Chapter 3, the voice modification system with articulatory mapping and manip-

ulation has been presented. This framework is realized through the use of a sequential

mapping flow between Gaussian mixture model (GMM)-based inversion and produc-

tion mappings, where intermediate representations of articulatory parameters can be

intuitively manipulated. Articulatory manipulation is also performed while considering

their interdimensional correlation, which can be derived from the statistical inversion

mapping model. Additionaly, direct waveform modification with spectrum differential

technique is also used, within the production mapping flow, to generate high-quality

modified speech signal by avoiding the use vocoder-based excitation generation as-

sumption. In the experiments, it has been demonstrated that the proposed system is

capable of producing high-quality modified speech for varying articulation effort, such

as hypo- and hyper-articulation, and is capable of producing modified vowel sounds

through manipulating the positions of the tongue.

In Chapter 4, the voice conversion framework based on neural network (NN) archi-

tecture, for spectral mapping modeling and waveform modeling, has been elaborated.

Specifically, the voice conversion system utilizes a structure of deep mixture density

network for the spectral mapping solution, and employs the use of WaveNet vocoder

to achieve better quality of converted speech waveform. However, there exists an issue

of mismatches between the spectral and the waveform models, where the converted

spectral features estimated from the statistical mapping model are not the same as the

natural spectral features used in training the WaveNet. A postprocessing method based

on the direct waveform modification technique is used to reduce these mismatches. In
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the experimental evaluation, the NN-based voice conversion system is capable of achiev-

ing higher quality and speaker-similarity of converted speech for cross-gender situations

compared to conventional voice conversion with vocoder-based excitation generation

assumption, while giving higher speaker-similarity in same-gender situations compared

to the conventional voice conversion with direct waveform modification technique.

In Chapter 5, this thesis has introduced a novel framework to improve the per-

formance of the voice conversion system with WaveNet vocoder. Specifically, to di-

rectly address the mismatches between the statistical spectral mapping model and

the WaveNet vocoder, a pretrained WaveNet model (trained by using natural speech

features) is fine-tuned with estimated (oversmoothed) spectral parameters. However,

in a voice conversion, it is not straightforward to obtain these oversmoothed spectral

parameters, owing to the differences in temporal structure between source and target

speakers. The converted source-to-target spectral parameters cannot be used to fine-

tune a WaveNet vocoder for the target speech waveform. To solve this problem, a

cyclic structure of recurrent neural network (CycleRNN) is proposed for the spectral

mapping solution, which is capable of estimating both of the converted source-to-target

spectra and the oversmoothed target spectra, where the latter has the same temporal

structure as the target speech through the use of the cyclic flow. The experimental re-

sults have demonstrated the effectiveness of the CycleRNN-based spectral mapping for

fine-tuning a WaveNet vocoder in a voice conversion system by the significant displays

of improvements in both of the speaker similarity and speech quality of the converted

speech compared to the best previous voice conversion with posprocessing method for

WaveNet vocoder.

Lastly, chapter 6 has given a novel solution for the non-parallel spectral modeling in

voice conversion. In a completely non-parallel speech dataset, the source and the target
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speakers utter different sets of sentences. Hence, there are no pairings can be made

for the optimization of the statistical model. Compared to parallel speech dataset,

non-parallel set is easier to obtain and, therefore, has greater availability/flexibility for

development of speech applications. Moreover, it is also not possible to obtain parallel

speech data where the speakers are speaking in different languages. To solve this prob-

lem, this thesis proposes to use the variational autoencoder (VAE)-based framework for

the voice conversion, where a regularized latent space is used as a shared space between

different speakers. Time-invariant speaker code is used to determine the speaker char-

acteristics and the VAE-based network is optimized based on the reconstructed spectral

features and latent space regularization. However, due the non-consideration of con-

verted spectral features in model optimization, the performance of VAE-based network

is significantly degraded for the voice conversion. To improve, a cyclic structure of VAE

(CycleVAE) has been proposed in this thesis, which is capable of recycling the converted

spectral parameters back into the system to obtain corresponding cyclic reconstructed

spectra that can be directly optimized. Hence, in the optimization, the condition of

spectral conversion is also considered within the CycleVAE-based model. Evidently,

the experimental results have demonstrated the effectiveness of the CycleVAE-based

framework that significantly improves the performance of non-parallel voice conversion

for the speaker similarity and the speech quality.

7.2 Future Work

Although comprehensive investigations and studies have been conducted in this thesis

towards the development of high-quality and flexible voice conversion system, there is

still a lot of works need to be done for continuous improvements.
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Table 7.1: Based on the contribution of each chapter (chap.) within this thesis for

realization of high quality and flexible voice conversion of Table 1.1, future work may

include a combination of Chapter 6, 5, and 3. This way, high quality output from

fine-tuned neural vocoder can be achieved, along with flexible system development using

nonparallel spectral modeling and flexible control of speech features through possible

manipulation of latent space utilized within the nonparallel spectral model.

Aspect Technique Chap. 3 Chap. 4 Chap. 5 Chap. 6 Chaps. 6-(3)-5

Flexibility Control ◦ ◦

Parallel ◦ ◦

Nonparallel ◦ ◦

High quality Wav-mod ◦ ◦

Wav-gen ◦ ◦ ◦ ◦

FT wav-gen ◦ ◦ ◦

Physical constraints for speech modification with articulatory control:

Naturally, speech production mechanism in human vocal tract is bounded by the

physical constraints of the speech organs (articulators). Therefore, it is much

more reasonable to adopt these constraints in the development of an articulatory

controllable speech modification and the like. Further, a merger between statisti-

cal modeling and direct physical approach would be beneficial in general for both

real-world applications and research studies. Such approach will also enable the

physical vocal-tract shape modeling, where interpretative voice conversion may

actually be realized through the conversion of vocal-tract shape between speakers.

Focus on improvements of the CycleVAE-based voice conversion:

The CycleVAE-based method for non-parallel voice conversion is a very versa-
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tile framework, which deserves continuous enhancements. First, investigations

on the use of other latent space, such as with Laplacian distribution or possibly

with a discrete space, e.g., using vector-quantized dictionary, are necessary. Sec-

ondly, examinations of its performance with various type of speech database, such

as cross-language speech data or different type of speech, e.g., body-conducted

speech, are worth to be conducted to see the extent of its versatileness and how

can it be improved to accomodate the corresponding needs. Third, augmentation

of speech dataset would also be straightforward for a CycleVAE-based voice con-

version, such as by using waveform similarity based overlap-add (WSOLA) [154]

technique of fundamental frequency (F0) transformation to obtain speech wave-

forms with varying F0 level corresponds to possible variation of speaker pair

in a dataset. In this case, the WSOLA-based method can actually be used to

also making it possible in using direct waveform modification [155] for cross-

gender conversion in a straightforward manner. Fourth, the use of continuous

space in speaker-coding features would be necessary to achieve speaker interpo-

lation, where the speaker characteristics of a speech signal can be conveniently

moved between different speaker space. Various improvements are also possible

to be integrated in this resourceful CycleVAE framework, such as duration mod-

eling, joint optimization with neural vocoder, and real-time processing, which

are briefly mentioned within the next following contents. These points are also

shown in Table 7.1, where the CycleVAE framework in Chapter 6 serves as a fun-

damental system for flexible nonparallel spectral modeling, then the fine-tuning

approach of neural vocoder in Chapter 5 can be straightforwardly applied to

achieve high-quality output, and finally flexibility in control can be achieved, as

in Chapter 3, by further exploring the usage of latent space for a set of possible
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controllable/versatile features.

Duration modeling in a voice conversion framework:

To develop a voice conversion system, it would also be useful to handle the

modeling of the duration of the speech, which might naturally varies between

different speakers. In doing so, one may resort to a sequence-to-sequence-based

method that inherently models the duration of the speech features. However,

taking into account that the real-world applications of voice conversion in most

of the time require streaming-like procedure, sequence-based models might face

quite difficulties. Hence, a solution of duration modeling that can handle real-

time low-latency processing, such as by handling segmental duration, should be

thought about and investigated. One possible way is by incorporating the use

of hidden semi-Markov structure in a recurrent neural network [152,153] or with

VAE-based non-linear switching dynamical systems (SNLDS) [156], which will

definitely be investigated for future work. Further, by being able to automati-

cally determine segmental durations and also able to extract speaker-independent

features within the latent space for a voice conversion system, automatic speech

recognition (ASR) and text-to-speech (TTS) systems can be easily realized by

using the encoder network and the decoder network, respectively. As such is the

versatile VC system.

Joint optimization of spectral modeling and neural vocoder:

Although, in this thesis, significant improvements of quality and accuracy have

been shown by fine-tuning of neural vocoder with respect to the spectral model-

ing output, such procedure is still cumbersome due to the need of separate model

trainings and fine-tuning. Especially, in the case of voice conversion, where there

may exist a lot of possible speaker pairs. Therefore, to improve the efficiency
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in development, it is worthwhile to start resorting to a method that can jointly

optimize both of the spectral (or speech features in general) modeling and the

neural vocoder. One may apply the use of language-dependent features to de-

velop a unified speech modeling, such as with phonetical posteriorgrams (PPG),

though it may not be straightforward for cross-language voice conversion, and

it also requires a reliable automatic speech recognition (ASR) system. Another

possible way is to utilize the latent space that is shared between speakers as in

the CycleVAE framework, for example, to be used as the conditioning features

in a neural vocoder. In the latter case, the CycleVAE and the neural vocoder

might be jointly developed. However, there may arise several problems in the

implementations, owing to the instability when training from scratch, and so on.

Hence, future investigations are worth to be conducted.

Real-time processing for real-world applications:

Finally, to deploy a voice conversion system for real-world applications, it is

inevitable that real-time processing can be administered. This, specifically, re-

lates to the low-latency streaming-like procedure, where the output of the system

should be obtained within a certain delay range with respect to the input. In

the case of having two separate statistical modelings, i.e., for spectral mapping

model and for speech waveform model, considerations of both of the size of the

models and the processing-time need to be taken into account, especially for neu-

ral vocoder that performs in the waveform-sample domain. Implementation of

neural network architecture in central processing unit (CPU) instead of graphics

processing unit (GPU) would also be necessary in the view of client-side deploy-

ments.
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