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Abstract

Speech is one of the most basic and important forms of human communication.

It consists of three components: linguistic, non-linguistic (those cannot be controlled

consciously such as gender, age, and emotions), and para-linguistic information (those

can be controlled consciously like intentions and attitudes). In order to realize speech

communication between humans and machines, a great deal of research has been con-

ducted on linguistic information recognition, i.e. automatic speech recognition. More

recently, research on the recognition of non-/para-linguistic information has attracted

much attention to achieve more natural communication that understands speech as

well as humans do. This thesis focuses on the recognition of speaker’s emotion, one of

the important factors of non-linguistic information.

Emotion plays an important role in speech communication. All the speaking be-

haviors such as linguistic contents and attitudes are influenced by emotions. There-

fore, speech emotion recognition is essential for understanding speech communications.

There are a lot of practical applications such as supporting agents or “voice of the cus-

tomer” analysis, human-like spoken dialogue systems that empathize with the speaker’s

emotions, and human psychological state detection like driver’s irritability.

Although many emotion recognition studies have been conducted, there are two

difficulties in real environments. First, the expression of emotion is extremely complex

and diverse. Speaker’s emotion is expressed by any or a combination of prosodic,
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linguistic, and dialogic features. For example, negative feelings can appear in a low

tone of voice, negative words, long pauses, and little backchannels. It is very difficult

to capture all of these characteristics to recognize emotions. Second, emotions are

subjective information that is strongly influenced by the perceiver (listener). The

criterion of emotion perception may differ from listener to listener. For example, some

listeners perceive the speaker to be happy about an utterance, while others perceive

the speaker to be in a normal state. However, the conventional emotion recognition

studies ignore this listener dependency and just estimate the majority-voted emotion of

multiple listeners, which results in mismatching between outputs of automatic emotion

recognition system and user’s feelings in real applications.

To achieve highly accurate emotion recognition in real environments, this thesis

performs two-step researches. The first step is the detection of particular emotions

in a real but limited sound environment. The constraints of the target emotions and

environments mitigate the diversity of emotional cues, the first problem, which brings

the recognition to a practical level of accuracy. Furthermore, these constraints decrease

the differences in the emotion perceptions between listeners. The second step is the

recognition of the wider range of emotions in a diverse real-world environment. This

step aims to solve the second problem since the differences in perceived emotions among

listeners will be larger.

The task of the first step is customer satisfaction estimation in contact center calls.

It can be applied to automatic agent evaluations. Two levels of customer satisfactions,

turn-level and call-level, are estimated in this task. The main problem is that it is

difficult to capture complex emotion expressions that appear in prosodic, linguistic,

and dialogic cues. To solve this problem, a novel customer satisfaction estimation

framework named a hierarchical multi-task learning model is proposed. The key idea
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of the proposed method is to leverage two characteristics of a customer’s emotional

expression. First, the satisfaction degrees of customers depend on the context. For

example, dissatisfied emotional states tends to continue several turns while satisfied

are not. Second, call-level and turn-level satisfaction results are closely related to each

other. Calls in which the call-level satisfaction is satisfied tend to show satisfied turns

in the middle and end of the call. The proposed model learns these characteristics

of emotion expressions to employ Recurrent Neural Networks (RNNs) and multi-task

learning of two-level estimation tasks. Experimental results on two datasets, simulated

and real calls, show that the proposed method significantly improves the estimation

accuracy of both call-/turn-level customer satisfaction estimations compared to the

conventional method.

The second step tackles four-class basic emotion classification in natural speech. One

of the applications is emotion-aware dialogue control in spoken dialog systems. The

problem is though emotion perception varies with the listener in natural speech, most of

the conventional methods ignore this individuality and just model the majority decision

of multiple listeners. This thesis presents a new emotion recognition framework that

models the emotion perception of individual listeners. The proposed method named

as a listener-dependent model can estimate not only the perceived emotion of each

listener but also the majority decision. It is inspired by the domain adaptation in deep

learning, which has achieved great success in speech processing. Emotion classifica-

tion experiments on two datasets demonstrate that the proposed method significantly

improves the accuracy of listener-dependent emotion recognition.

These two studies demonstrate that there are certain trends in the expression and

perception of emotional information, and that emotion recognition performance in real

environments can be improved to utilize these trends. This thesis contributes to the
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advancement of the use of emotion recognition in real environments and the realization

of natural communication between humans and machines.





1 Introduction

1.1 Background

Human speech is the most basic and widely-used form of daily communication.

Speech conveys not only linguistic information but also other factors such as speaker,

emotion, and so on, all of which are essential for understanding speech communication.

There have been many studies on the recognition of linguistic and some non-linguistic

information, especially speaker identity. In recent years, the recognition of the rest

of non-/para-linguistic information has also attracted attention. This thesis focuses

on speech emotion recognition (SER), which is one of the most important aspects of

non-linguistic information recognition.

There are a lot of SER applications. One is assisting agents in contact centers.

Identifying the customer’s positive/negative reactions yields a better understanding of

the strengths and weaknesses of products and services. Online monitoring of CS will

enable supervisors to take over the calls as soon as customers start to exhibit negative

responses [1]. Another is a visualization of mental state. Driver state monitoring from

speech prevents risky driving [2]. It is also applicable in mental health assessment [3].

The other is an advancement of spoken dialog systems. It allows yielding human-like

responses such as sympathy, which gains rapport between humans and systems [4].

SER can be categorized into two tasks: dimensional and categorical emotion recog-

nition. Dimensional emotion recognition is the task of estimating the values of several
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emotion attributes present in speech [5]. Three primitive emotion attributes, i.e. va-

lence, arousal, and dominance, are commonly used [6]. Categorical emotion recognition

is the task of identifying the speaker’s emotion from among a discrete set of emotion

categories [7]. The ground truth is defined as the majority of perceived emotion class

as determined by multiple listeners. Comparing these two tasks, categorical emotion

recognition is more suitable for most applications because it is easy to interpret.

1.2 Thesis Scope

This thesis aims to improve categorical SER performance in real environments. In

all subsequent studies, the inputs are audio signals alone and the objectives are finite

numbers of emotion categories. Note that the ground truth emotions in this thesis are

those which perceived by third party listeners, not experienced emotions of speakers

themselves, as following to the most SER studies [8–10].

A large number of SER methods have been proposed. One of the basic approaches

is based on machine learning, shown in Figure 1.1. The main components are two: the

feature extractor and the emotion recognition model. The audio feature is obtained

from an audio signal with the feature extractor, then the posterior is evaluated by

the emotion recognition model. Several types of features such as acoustic [8], lexi-

cal [11], and dialogic features [12] are employed as the features. Statistical models such

as Deep Neural Networks (DNNs) and Support Vector Machines (SVMs) are used as

the emotion recognition model. Most of the recent models are composed of multiple

types of DNN layers like Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), and attention layers to learn time-varied emotional cues automat-

ically. End-to-end emotion recognition models which have no feature extractors have

also been proposed so as to leverage the rich information of raw audios [7, 13]. These
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Posterior probability 
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Figure 1.1: Speech emotion recognition based on machine learning.

models are trained with a large amount of training data, i.e., pairs of audio and the

ground-truth emotion labels.

Despite these advances, SER is still a challenging task. There are two main difficul-

ties; diversity of emotion expression and listener dependency of emotion perception.

First, it has been reported that emotional cues appear in a great variety of ways.

For example, negative feelings can appear in a low pitch of voice, negative words, long

pauses, little backchannels, and so on. [14,15]. Furthermore, the expression of emotions

depends on the speaker’s situation; even particular product names are the indicators

of customer’s negative feelings in contact center calls [1]. It is difficult to learn these

complex cues to recognize emotions accurately. Second, emotion perception depends

on listeners. When listening to a certain speech, some listeners feel that the speaker

is happy, while others feel he/she is in a neutral state. It should be considered for

emotion recognition because it is necessary to give convincing recognition results for

various audiences in practical applications.

In this thesis, a step-wise strategy is taken to realize SER in real environments. The
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steps are illustrated in Figure 1.2. The first step is to recognize particular target emo-

tions in real but limited environments. These limitations mitigate the problem of the

diversity of emotion expression, which provides high recognition accuracy. Customer

satisfaction estimation in contact center calls is selected as the task of the first step.

Ground truths are determined by multiple well-educated real supervisors, which leads

to ignoring the second problem of the perceptual differences between listeners. The

second step is to estimate a wider range of target emotions in various situations. The

task is a basic emotion classification for isolated speech in human-to-human communi-

cation. The ground truths are defined by a wide variety of listeners, and the main issue

of this step is to handle listener dependency on emotion perception. Our ultimate goal,

recognition of every emotion in any situation, is very difficult with current technology

that it is out of scope in this thesis.

1.3 Thesis Overview

Customer satisfaction estimation in contact center calls is reported as the first task.

There are two sub-tasks: call-level and turn-level, each of a series of customer’s ut-

terances, satisfaction estimation. The main problem is to learn customer satisfaction

degrees that appear in various aspects of features. The key idea of the proposed

approach is to utilize the characteristics of customer’s emotional expression patterns.

Analyses of the contact center calls indicate that there are typical emotional expression

patterns in positive and negative calls, e.g. customers tend to represent their satisfac-

tions in the middle and the end of positive calls. The proposed method, named as

a Hierarchical Multi-Task (HMT) model, learns these characteristics by simultaneous

training of the two-level estimation tasks. Three types of heuristic turn-level features,

prosodic, lexical, and dialog features, are employed to capture emotional cues in indi-
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• Solve the problem of complexity of 
emotion expression
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Large

Step 2
Basic emotion classification
in natural speech (Chap.4)

• Recognize wider target emotions
in diverse real-world environments

• Solve the problem of variety of 
emotion perception by listener

Thesis scope

Figure 1.2: The scope of this thesis.

vidual turns. Furthermore, an adaptation framework for the HMT model is presented

in order to mitigate the domain dependency problem. Experiments on simulated and

real calls reveal that the proposed method outperforms the conventional frameworks.

The second task is basic emotion classification in natural speech. The challenge

is to solve listener dependencies of emotion perceptions. To solve this problem, a

novel SER framework that constructs listener-dependent emotion perception models

is proposed. The model can estimate the listener-specific perceived emotion from an

audio signal and a target listener indicator. It can also evaluate the dominant emotion

by averaging the outputs of multiple listener-dependent models. Three types of DNN

adaptation frameworks that have been successful in speech processing are employed for



6 1 Introduction

the listener-dependent model. Experiments on two emotional speech corpora show the

individuality of listener perception and the effectiveness of the proposed approach.

This thesis is organized as follows. The related work has been reviewed in Chapter 2.

The first task, customer satisfaction estimation, is described in Chapter 3. The study

of basic emotion classification is presented in Chapter 4. Finally, the summary and

future work are in Chapter 5.



2 Related work

2.1 Introduction

This chapter presents related work on speech emotion recognition. First, to overview

the general information of speech emotion recognition, the theory of emotion, the po-

sition of emotion in phonetics, and the task descriptions of speech emotion recognition

are discussed. Next, conventional techniques for the two speech emotion recognition

tasks that are tackled in this thesis are described; customer satisfaction estimation in

contact center calls and basic emotion classification in natural speech.

2.2 Speech Emotion Recognition

2.2.1 Description of Emotion

There are two main theories to explain the construction of emotion. The first is basic

emotion theory established by Ekman [16]. He theorized that several emotion categories

are recognized universally in different cultures. Six basic emotions are reported in

his work: anger, disgust, fear, happiness, sadness, and surprise. Plutchik has been

developed the basic emotion theory to determine the wheel of emotions; there are eight

primary emotions grouped on a positive and negative basis [17]. They also reported that

complex emotions could be formed by combining basic emotions. The second is multi-
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Valence

Arousal

Dominance

(b) Dimensional Emotion Theory(a) Basic Emotion Theory

Neutral

Happiness Sadness

Fear Disgust Anger

Surprise

Figure 2.1: An example of the two emotion theories: basic emotion [16,17] and dimen-

sional emotion [18,19].

dimensional factor theory [18]. It attempts that emotions underlie a few dimensions.

Valence, Arousal, and Dominance are often used as the factors of dimensions [19]. One

of the advantages of this theory is that it can capture the similarities between emotional

experiences. The comparison of the two theories is shown in Figure 2.1.

2.2.2 Speech Emotion

In phonetics, speech is categorized as a factor of non-linguistic information. It has

been reported that speech conveys three types of information: linguistic, non-linguistic,

and para-linguistic [20, 21]. Linguistic information is the symbolic information that is

represented by a set of discrete symbols, and it can be transcribed in written language.

Non-linguistic, or sometimes referred to as extralinguistic [22], information is such

factors as the age, gender and physical and emotional state of the speaker, and so on,

and can not generally be controlled by the speaker. Para-linguistic is the factors that

are controlled by the speaker to modify and supplement the linguistic information, e.g.

intentions, attitudes, and speaking styles, etc.
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2.2.3 Tasks of Speech Emotion Recognition

Following the emotion construction theories, there are two major tasks in SER. One

is categorical emotion recognition [23, 24]. The task is classifying each utterance into

a finite number of target emotions. A subset of basic emotions is often used as the

target. Detection of particular emotions like frustration detection [25] is included in this

task. The main advantage is that it is easy to interpret the recognition results, which

is suitable for many applications. The other is dimensional emotion recognition. It

follows dimensional factor theory to regress the value of each dimensional factor. Some

studies tackled utterance-level estimation [26], while others were frame-level evaluation

in an utterance to capture emotional changes by time [27]. The advantage of this task is

to measure the similarity of estimated emotions. This thesis adopts categorical emotion

recognition as the tasks with a view to practical applications.

Another important aspect of emotion lies in its representation and observation in

speech communication. One framework is the Brunswik functional lens model [28]

illustrated in Figure 2.2. It supposes at least two participants, the speaker and the

listener, and provides three types of emotion representations. One is the experienced

emotion that is the latent emotional state of the speaker. Another is the expressed

emotion that represents in the speaker’s behaviors including voice, face, body gestures,

etc. The other is the perceived emotion that is decoded from the behaviors by the

listener. These representations may sometimes be mismatched [29], and it is very

difficult for the experienced and expressed emotions to determine the ground truths

because no one can validate the correctness of them. Thus this thesis defines the

perceived emotions as the objectives of the recognition, as with most conventional

studies [8–10].

The ground truth of the perceived emotion is defined as the majority-voted emo-



10 2 Related work
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Figure 2.2: An illustration of emotion representation in human communication by the

Brunswik functional lens model [28].

tional category of multiple listeners for categorical emotion recognition. SER methods

are evaluated on the basis of the accuracy of the majority-voted emotion estimation.

Most conventional methods use the majority-voted emotions directly for training, while

several studies employ listener-wise perceived emotions to model diversity of emotion

perceptions. The latter approaches are described in Section 2.3.2.

2.3 Conventional Studies for Speech Emotion Recog-

nition

2.3.1 Customer Satisfaction Estimation

Customer satisfaction (CS) estimation is one of the major fields in SER. There

are two tasks: call-level and turn-level CS estimation. The call-level and turn-level

CS mean customer satisfaction degrees in the entire call and each turn in the call,

respectively. An example of the CS ground-truth in two tasks is shown in Figure 2.3.
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Table 2.1: Studies of call-level/turn-level customer satisfaction estimation.

Task Author # class Feature Classifier Label # of train year

Call-level Gamon [30] 4 Lexical SVM self 40884 docs 2004

Gupta+ [31] 3 Acoustic/Lexical GMM (no info.) 20 calls 2007

Godbole+ [32] 6 Lexical NB/SVM/rule annot. 3000+ docs 2008

Park+ [1] 2/5 Acoustic/Lexical/Contexual DT/LR/NB/SVM self 115 calls 2009

Hassan+ [33] 2 recognized emotions DT/NB/k*/NN self 39 calls 2010

Llimona+ [34] 3 Gender/Duration (Analyses) self 17309 calls 2015

Chakraborty+ [35] 4 Acoustic/Dialog event rule annot. 73 calls 2015

Chowdhury+ [12] 3 Acoustic/Lexical/Interactive SVM annot. 739 calls 2016

Sun+ [36] 2 Acoustic/Lexical SVM self 8652 calls 2016

Segura+ [37] 2 Raw waveform CNN self 19360 calls 2016

Cong+ [38] 2 Acoustic/Word seq. NN/CNN self 31120 calls 2016

Bockhorst+ [39] Regress Lexical/Telephone-Log Rank model self 8726 calls 2017

Luque+ [40] 2 Acoustic/Word seq. CNN self 17612 calls 2017

Turn-level Devillers+ [41] 4 Acoustic/Lexical MLE annot. 4548 turns 2003

Vidrascu+ [42] 5 Acoustic/linguistic event SVM annot. 2294 turns 2007

Morrison+ [43] 2 Acoustic SVM/RF/NN/K* annot. 388 turns 2007

Devillers+ [44] 3 Acoustic SVM annot. 7452 turns 2010

Polzehl+ [45] 2 Acoustic/Lexical SVM/NN annot. 16802 turns 2011

Nomoto+ [46] 2 Acoustic/Lexical/Interactive SVM annot. 800 turns 2011

Erden+ [47] 2 Acoustic/Lexical SVM/GMM/NN annot. 8512 turns 2011

Vaudable+ [48] 3 Acoustic/Lexical SVM annot. 3684 turns 2012

Galanis+ [49] 2 Acoustic/Speaker info. SVM annot. 1396 turns 2013

Chakraborty+ [50] 2 Lexical/recognized emotions SVM/NN/k-NN annot. 354 turns 2016

Seng+ [51] 6 Acoustic/Visual NN annot. 1679 turns 2018

In most cases, a two-channel call signal alone is available in both tasks. Not only

prosodic but also lexical and interactive features are utilized because the vocabulary

used in contact center calls is biased and turn-taking characteristics will be related to

the customer’s emotion. The conventional studies are outlined in Table 2.1.

Call-level Estimation

The approaches of conventional call-level estimation can be categorized into two

groups; extracting call-level features and integrating short-term estimated emotions.

The first group estimates call-level CS by call-level features and a classifier. Many

heuristic call-level features have been investigated. Acoustic features such as statistics

of pitch, intensity, duration, and Mel-Frequency Cepstral Coefficients (MFCCs) in

customer utterances are widely used [1, 12, 31, 35, 36]. Lexical features such as word
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Agent

Customer

turn: dis neu neu sat

call: neu

Figure 2.3: An example of the call-level and the turn-level customer satisfaction. The

descriptions of dis, neu, sat means dissatisfied, neutral, and satisfied, respectively.

N-gram or Bag-of-Words are also employed to capture emotion-related idioms such as

appreciation or criticism [1,12,30–32,36,39]. Note that most previous studies draw their

linguistic features from automatic speech recognition results to extract the features

without transcription. Some conventional methods employ interactive features like turn

overlap or call dominance, which reflects customer’s feelings [39]. Dialog event features

such as answer repetition were proposed for interactive voice response systems [35].

Meta information of calls like a history of previous interactions and in-queue waiting

time has been employed [1,39]. It has also been reported that the gender combination

of customer and agent is associated with call-level CS [34]. Simple multi-class classifiers

such as Support Vector Machine (SVM) were used in these works. In contrast with these

heuristic feature-based methods, recent studies employ Deep Neural Networks (DNNs)

to acquire call-level features automatically. Low-level features such as audio signals

or automatic speech recognition results are used as input to the classifiers [37, 38, 40].

These conventional methods mainly focus on the global characteristics of calls, but some

real calls are too complex for these frameworks to estimate call-level CS accurately.

For example, some of the real contact center calls contain both positive and negative

customer attitudes; customer dissatisfaction in the first half, and better feelings in the

second half.

The other group integrates short-term emotion recognition results for call-level esti-



2.3. Conventional Studies for Speech Emotion Recognition 13

mation [33]. A pre-trained emotion classifier is applied to each customer utterance to

get posterior probabilities of the customer’s short-term emotion. The results are inte-

grated by heuristic rules (e.g. overall average or last-K emotions) to estimate call-level

CS. One of the advantages of this framework is that it is possible to consider the local-

ized characteristics of the customer in a call. However, there are several problems in

this method; short-term emotion classifiers are usually trained by domain-mismatched

data such as acted emotional speech, and the heuristic integration rules proved to be

too rough to capture long-range sequential changes in customer emotions. Our pro-

posal in this thesis employs this approach while using LSTM-RNNs to model long-range

sequential information.

Turn-level Estimation

Conventional work on turn-level CS estimation is similar to that of call-level esti-

mation. Most solutions employ turn-level features with a simple classifier. Acoustic

and lexical features are also commonly used in the turn-level task [41–51]. Several

types of turn-level statistics of acoustic features have been developed [43, 44]. Lexi-

cal features based on bag-of-words or CS-wise language models have also been widely

used [47, 48]. Interactive features similar to the call-level features are effective [46]. It

is reported that speaker information defined by call meta-information, such as gender,

is also effective [49]. Some studies proposed the use of linguistic event features found

in transcriptions like laughing [41]. In recent years, the use of visual features has been

proposed for video-based calls [51]. One conventional method similar to the call-level

method utilizes emotion recognition results [50]. These methods are applicable to on-

line CS estimation, i.e. estimation of current CS degree during a call using information

from the call beginning to the current time.
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One of the problems with conventional methods is that long-range sequential infor-

mation is ignored. While conventional methods assume that CS class in individual

turns is independent, customer’s feeling in a turn is strongly related to the surround-

ing agent/customer turns. It is desirable to consider long-range sequential information

of turns in a call. Another problem is that call-level CS is seldom considered in the

turn-level estimation. The use of call-level CS will improve turn-level estimation perfor-

mance because the distributions of turn-level CS are related to call-level CS. Note that

the proposed method described in Chapter 3 of this thesis achieves both points. The

proposal, the HMT model, uses LSTM-RNNs to learn long-range sequential changes in

turn-level CS; call-level CS is taken into consideration in the training step to acquire

the relationship.

2.3.2 Basic Emotion Classification

This section describes the conventional studies in basic emotion classification. It is

the task that classifies an isolated speech into a finite number of target emotions. The

target emotions are usually a subset of basic emotions proposed by Ekman [16]. The

ground truth is defined as the majority-voted emotion of multiple listeners.

There are two major approaches to basic emotion recognition. The first is those

based on acoustic information alone, while the second is based on the multimodal

features, i.e. combination of acoustic with other features.

Approach 1: Acoustic-based Method

It is reported that human perception of emotion is affected by prosodic character-

istics of speech. For example, angry speech tends to be high pitch variance and fast
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speaking rate [15]. Thus this approach utilizes acoustic features that quantify prosodic

information.

The traditional approaches are based on utterance-level heuristic features including

the statistics of frame-level acoustic features such as pitch, power, and MFCC [8, 52].

However, it is difficult to create truly effective features because emotional cues exhibit

great diversity. Most of these recent studies are based on DNN-based models. The pos-

terior probabilities of the majority of the perceived emotions are estimated from each

acoustic feature sequence. The estimation model consists of multiple DNN layers such

as CNNs, Long Short-Term Memory (LSTM)-RNNs, attention mechanisms, and Fully-

Connected (FC) layers [7, 9, 13]. Frame-level features like log power spectrum [23, 24],

log-mel filterbank [53] or heuristic Low-Level Descriptors (LLDs) such as fundamental

frequency fo and zero-cross ratio [10, 54] are often used as the input. One of the ad-

vantages of this approach is that the model can automatically learn context-sensitive

emotional cues. Our proposals are based on these successful DNN-based frameworks.

Approach 2: Multimodal-based Method

Humans express their emotion by not only prosody but also other aspects such as the

linguistic contents, face, and dialog behaviors. Thus some of the conventional studies

combine acoustic features with lexical, visual, and dialogic ones.

One of the multimodal-based approaches leverages linguistic features. Word features,

e.g. bag-of-words and Term Frequency-Inverse Document Frequency (TF-IDF) [55],

and word sequences themselves are used as a kind of the audio features in Figure 1.1 [11,

56]. In the extraction of linguistic features, automatic speech recognition or transcrip-

tion is used [57]. Since many applications do not have transcriptions, it is more practical

to use speech recognition results. However, the problem is that automatic recognition
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results may contain word errors, which degrade emotion recognition performances.

Another approach is to use visual features. Several methods have been proposed

to estimate emotions using a DNN model with both audio and face images [58]. In

general, emotion recognition based on face images tends to be more accurate than

emotion recognition based on speech [59], so the combination with video information

is expected to improve recognition accuracy. However, the use of visual features may

restrict the application, and it may also cause recognition errors due to the bad position

of the face and occlusion.

The other is to utilize dialogic features. It has been reported that the interlocutor’s

information is effective for the target speaker’s emotion recognition in a two-speaker

conversation [60, 61]. The use of dialogic features will be useful in such a limited

environment.

Speaker and Listener Dependencies in Emotion Recognition

In order to improve the above two approaches, there are several methods that con-

sider speaker and listener dependencies in SER.

Several studies have investigated speaker dependency on emotional expression. They

indicate that the speaker differences significantly affect emotion representation. For ex-

ample, each speaker exhibits different laryngealisation and pitch characteristics [62].

It has been suggested that speaker variability is a more serious factor than linguis-

tic content [63]. Therefore, a lot of speaker adaptation methods for SER have been

developed. Some attempt feature-level normalization; a speaker-dependent utterance

feature is transformed into its speaker-independent equivalent [64]. Another approach is

model-level adaptation. A speaker-independent emotion recognition model can, with a

small amount of adaptation data, be adjusted to yield a speaker-dependent model [65].
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Recent studies employ multi-task learning to construct gender-dependent models with-

out inputting speaker attributes [53, 66]. Personal profiles have also been utilized to

estimate speaker-dependent emotion recognition [67].

It has also been reported that emotion perception varies with the listener. Younger

listeners tend to perceive emotions more precisely than their elders [68]. It is reported

that female listeners are more sensitive to emotion than males [69]. The perception

also depends on culture [70]. Even though listener variability affects the majority

decision as to emotion perception, there is little work that considers the listener in

SER. One related work is soft-label /multi-label emotion recognition; it models the

distribution of emotion perception of listeners [24, 54, 71]. However, it is impossible

with their approaches to model the bias of emotion perception for a particular listener

since it cannot distinguish individuals. In music emotion recognition, several studies

have tackled listener-wise perception [72, 73]. However, to the best of our knowledge,

there is little work to utilize listener variability for SER. We thus aim to make listener-

dependent emotion recognition models in this thesis.

It is considered that constructing listener-oriented emotion recognition models is

strongly related to the frameworks created for domain or speaker adaptation. As men-

tioned with regard to speaker adaptation in emotion recognition, adaptation has two

approaches: feature-based and model-based adaptation. In recent speech processing

methods such as those for speech recognition and speech synthesis, model-based adap-

tation is dominant because it is very powerful in handling complex changes in domains

or listeners. One of the common adaptation approaches is updating the parameters

of a pre-trained model by using a target domain dataset [74]. Another approach is

developing a recognition model that includes the domain-dependent part. Technolo-

gies along these lines such as switching domain-dependent layers [75], projections with
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auxiliary input [76, 77] or summation of multiple projection outputs with speaker-

dependent weights [78] have been proposed. Inspired by these successful frameworks,

our proposal yields listener-dependent emotion recognition models.

2.4 Summary

This chapter described related studies on speech emotion recognition. The general

information about speech emotion recognition was summarized; the description of emo-

tion, the fundamental tasks, and the difference from other information contained in the

speech. Conventional methods for the two speech emotion recognition tasks, customer

satisfaction estimation and basic emotion classification, are then introduced.
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3 Customer Satisfaction

Estimation in Contact Center

Calls based on a Hierarchical

Multi-Task Model

3.1 Introduction

Contact centers are one of the most important channels between companies and their

customers. They are regarded as far more than merely replying to customer’s requests

but are also seen as great opportunities for increasing sales. Customer’s discontents in

calls will indicate new ideas for products [79, 80]. Kind and supportive responses by

agents improve the brand by directly promoting loyalty [81]. Therefore, most companies

see a pressing need to improve contact center performance.

Customer satisfaction (CS) is the dominant quality attribute in contact centers. The

ratio of satisfied/dissatisfied calls can indicate the performance of individual agents and

contact centers. Identifying the customer’s positive/negative reactions yields better un-

derstanding of the strengths and weaknesses of products and services. Furthermore,

online monitoring of CS will enable supervisors to take over the calls as soon as cus-

tomers start to exhibit negative responses [1]. Therefore, measuring the CS of each call

and interval is essential for improving the quality of products and contact center itself.
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However, as most current contact centers survey CS scores manually by sampling and

listening to calls, the survey size is limited due to the high costs. Thus automatic CS

estimation is an urgent requirement.

The tasks of CS estimation can be categorized into two groups: call-level and turn-

level estimations. Call-level estimation is assessing the CS degree of an entire call. Var-

ious kinds of call-level features have been developed such as prosodic change and spoken

words of the customer [1,12,36,38], opening/closing talk of the agent [1] and turn-taking

characteristics [12]. Meta information of calls like previous inbound interactions or

waiting time have also been employed [1, 39]. Recent approaches utilize deep neural

networks to capture call-level features automatically from raw waveforms [37] or auto-

matic speech recognition results [40]. Turn-level estimation, on the other hand, is to

evaluate the CS in each customer turn during a call. A turn represents a segment as de-

termined by speaker change information. Most conventional methods use hand-crafted

prosodic and lexical features extracted from individual customer turns [41,43, 48].

Though conventional methods improve estimation performances by means of devel-

oping features, there are two remaining problems. First, in both tasks, long-range

sequential information is ignored. In turn-level estimation, conventional methods treat

individual turns as being independent even though the CS in one turn is related to the

surrounding agent/customer turns. Conventional methods for call-level estimation use

statistics of hand-crafted features as determined for the entire call, not the sequences.

Second, the relationship between turn-level and call-level CS is not considered. In fact,

call-level CS tends to be positive if turn-level CS rises towards the end of the call.

However, all conventional methods regard the two estimation tasks as being separate,

and so model them independently.

In this chapter, we propose a new CS estimation method that utilizes long-range
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sequential information and the relationship between call-level and turn-level CS. Dif-

ferent from conventional methods, we assume that both call-level and turn-level CS

labels are available. The proposed method, named a Hierarchical Multi-Task (HMT)

model, is achieved by hierarchically stacking two-level CS estimation networks. Long

short-term memory recurrent neural networks (LSTM-RNNs) are employed for both

turn-level and call-level CS estimation to capture the long-range sequential contexts

of calls. Both networks are hierarchically stacked so that turn-level estimation results

can be used directly for call-level estimation. Furthermore, the proposed method uses

joint optimization training to learn the relationship of the two tasks. Hand-crafted

features derived from several conventional studies are used as input. Our HMT model

is inspired by a Joint Many-Task model, which uses the estimated result of one task as

the input of another task [82].

Our previous work [83] conducted preliminary experiments on acted calls to elucidate

the effectiveness of the HMT model for both turn-level and call-level estimation. How-

ever, several issues remained outstanding; real calls were not used in the performance

evaluations, and the features were not analyzed. Thus this thesis conducts further

investigations to better elucidate the capability of our HMT model. The contributions

of this study are as follows:

• Real contact center calls are used in addition to acted ones to evaluate the HMT

model.

• Data analyses of turn-level and call-level CS are conducted to reveal their char-

acteristics and relationship. To the best of our knowledge, this is the first work

to investigate them.

• Feature comparisons are presented to measure the effectiveness of the hand-

crafted turn-level features.
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• All the ground truths are defined by harmonizing multiple third-person annota-

tions. Furthermore, the effects of harmonization are investigated.

• In addition to the flat-start training of the HMT model, an adaptation technique

is presented. Our adaptation method can improve CS estimation performance

of not only the call-level task, but also the turn-task one even if only call-level

labels are available.

This chapter is organized as follows. The task description of this chapter is shown

in Section 3.2. Details of the datasets and analyses conducted are introduced in Sec-

tion 3.3. The proposal, the HMT model, and its training methods are shown in Sec-

tion 3.4. Evaluation experiments are reported in Section 3.5 and the conclusion is given

in Section 3.6.

3.2 Task Descriptions

The tasks of this chapter are two: call-level and turn-level CS estimation. We treat

both as a three-class classification task like several conventional studies [12,44,48]. The

classes are pos, neu and neg. pos and neg represent the articulate positive/negative

statements of a customer. pos includes emotions such as satisfied, happy and excited,

while neg includes emotions like dissatisfied, disappointed, frustrated and angry. neu

is neither of them, i.e., inarticulate positive/negative statements and neutral emotion.

Such three class classification is desired for automatic quality measurement of products

or agent’s performance; articulate positive/negative calls probably derive from the

quality of products or agent’s performance, while inarticulate ones may be derived from

the customer’s characteristics. However, our definition means that neu class includes

various types of emotion samples, which will complicate the solution of classification
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problems.

All turns and backchannels are detected automatically in a three step process. First,

automatic voice activity detection based on switching Kalman filter [84] is applied to

both agent and customer channels to obtain Inter-Pausal Units (IPUs) [85]. IPUs

are defined as consecutive tokens with no gap greater than 200 ms. Second, IPUs

less than 1 second or those that include contradictory IPU intervals are regarded as

backchannels. Finally, a continuous string of IPUs without backchannels is taken as a

turn. An example of detected turns and backchannels is shown in Figure 3.1. Turn-

level estimation is the task of estimating CS class of each individual customer turn

from itself and its surrounding turns and backchannels.

Different from several conventional studies, we define ground-truth CS classes from

multiple annotators. It is reported that self-reported CS rating has several issues [39,

86]; human ratings of emotion do not follow an absolute scale, and customers may

not provide enough objective evidence about subjective opinions. Thus we employ

third-person labels to make reasonable ground-truths for most professional agents. In

this chapter, all the annotators are contact center supervisors who are trained in the

criteria of CS and evaluate call-level/turn-level CS themselves on a daily basis.

In turn-level estimation, we assume two situations: online and batch. Online de-

mands evaluation from only the current and the past turns/backchannels of the agent

and the customer, which is the same condition as the conventional studies. Batch is

allowed to use all the turns and backchannels in a call to estimate each turn-level CS.

Online estimation is more useful than batch situation because it can be used for wider

applications such as real-time CS monitoring. However, it will be more difficult due to

the limited amount of information of the agent and the customer available.

Furthermore, we set two training conditions: flat-start and adaptation. Flat-start
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Agent

Customer

time
Inter Pausal Unit (IPU) Turn

Backchannel

( < 1sec) ( > 1sec)

Figure 3.1: An example of detected turns in a call.

constructs estimation models from the beginning while adaptation adjusts the trained

models to particular contact center calls. It is reported that there are some domain-

dependent factors in CS estimation [44] and domain adaptation will be required in

practice, as often mentioned in speech recognition or image classification studies. Fur-

thermore, we consider two adaptation scenarios: adaptation with both level labels and

that with just call-level labels. This is because the cost of turn-level label annotation is

much higher than that for call-level annotation so adaptation with just call-level labels

is desired in practice.

3.3 Datasets

This section describes the two Japanese call datasets, acted and real, used in this

chapter. Furthermore, several analyses of turn-level/call-level CS that reveal their

characteristics and relationship are discussed.
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3.3.1 Recording and Annotation

We created an acted call dataset to collect a wide range of ‘realistic’ emotional calls.

The calls were made by improvised conversations along with predetermined outlines.

The domain was the customer center of a frozen food company and included several

sub-tasks such as new orders, inquiries, and cancellations. First, we made various types

of outlines, each consisting of a situation, desired results, persona of a customer, and

change of emotion in each sub-task. Persona included information of gender, age, family

structure and character. Emotional words like ‘gladly’ and ‘with annoyance’ were used

to indicate customer’s attitudes. These outlines were strictly checked by real contact

center agents and the calls that lacked naturalness (e.g. mismatch between customer’s

character and emotion patterns) were eliminated. This process yielded 89 outlines.

Then, a pair of speakers read the same outline and decided their roles as operator or

customer before talking. They held an improvised conversation via phone sets while

following the outline. All of the speakers were contact center agents (10 males, 19

females) and speaker pairs were selected randomly. Inadequate calls which include

overacted utterances or those that deviated from the outline were rejected as agreed

by the three inspectors. All of them were real contact center supervisors. The result

was 306 recorded calls from 29 speakers that included a variety of satisfaction and

dissatisfaction types. The total length was 29.7 hours; the calls had talk times ranging

from 4 to 12 minutes. All were recorded in stereo, 8 kHz with 16 bit format.

The real calls came from a technical support center handling personal computers

and network appliances. The tasks were mainly troubleshooting of IT devices. Agents

and customers included both male and female, but no meta-data was available. We

randomly picked approximately four hundred calls recorded in the period from August

to September, 2017. Then the inadequate calls, e.g. those which were disconnected
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in the middle of the conversations, were eliminated with the agreement of multiple

supervisors. Finally, we collected 391 valid calls. Total and average lengths of calls

were 39.1 hours and 6.1 minutes, respectively. The recording format was the same as

that of the acted dataset.

Both call-level and turn-level CS ground truths were decided by three annotators.

All the annotators were contact center supervisors (same as the inspectors of inade-

quate calls) and every call was annotated by two of them. These two levels of ground

truths were decided independently by harmonizing the call-level/turn-level annotations

as described below. First, each annotator listened to each call twice; first time to assign

CS degree to the entire call and the second time to give CS degrees to arbitrary inter-

vals in the call. A 5-point Likert scale was used; 5:very positive, 4:positive, 3:neutral,

2:negative, 1:very negative. Positive included satisfied, happy, excited while negative

included dissatisfied, frustrated and cold/hot anger. To adjust the criteria among the

annotators, all listened to 5 sample calls of each call-level CS degree before commenc-

ing the annotation. Sample calls were previously selected by one annotator from the

acted calls, and they were not used thereafter. Second, the ground-truth decision step

collapsed CS degrees to assign three CS classes: pos included 5:very positive and 4:pos-

itive, neg included 1:very negative and 2:negative and neu was 3:neutral. With regard

to turn-level CS classes, in addition to that criteria, if an annotator assigned pos or neg

intervals with over 50 % overlaps of IPUs in a customer turn, we regarded that turn

as pos or neg, respectively, while all the rest were neu. Ground truths were finally de-

fined to harmonize annotator-wise CS classes. They were pos or neg if both annotators

assigned pos or neg class to each call/turn, while the rest were neu. Because of these

harmonization operations, pos and neg class well exhibited the characteristics of these

classes while some of neu may shade into the pos or neg class. The numbers of calls or
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Table 3.1: CS label distributions in the acted and the real dataset.

# of calls # of turns

neg neu pos neg neu pos

acted 71 111 119 2162 4786 962

real 31 304 56 376 7603 227

Table 3.2: Means and standard deviations of call/turn durations. ∗ represents that its

mean showed significant differences from those of the two other classes.

call-neg call-neu call-pos turn-neg turn-neu turn-pos

acted 352.7 ± 50.4 371.8 ± 65.8 398.9 ± 81.8 6.4 ± 6.1 6.1 ± 6.5 5.6 ± 5.4

real 371.3 ± 127.9 332.6 ± 129.1 418.9 ± 256.4 10.4∗ ± 11.7 5.5 ± 6.4 5.4 ± 4.5

turns in each dataset are shown in Table 3.1.

To measure pair-wise agreement of the two annotators, we evaluated Cohen’s kappa.

The average kappa coefficients of three pairs of annotators were 0.68 for call-level and

0.51 for turn-level in the acted data; 0.53 for call-level and 0.42 for turn-level in the

real data. These values suggested moderate matches and that the ground truths were

sufficiently reliable.

3.3.2 Analyses

We conducted several analyses to reveal the characteristics of call-level and turn-level

CS.

First, the average lengths of calls and turns were investigated. The results are shown

in Table 3.2. In both datasets, pos calls and neg turns were slightly longer than the

others in call-level/turn-level comparisons. However, the distributions of the durations

in each CS class were heavily overlapped.
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Table 3.3: Frequencies of neg, neu and pos turns in each call-level CS.

call-neg call-neu call-pos

turn-neg turn-neu turn-pos turn-neg turn-neu turn-pos turn-neg turn-neu turn-pos

acted 17.9 ± 8.3 7.8 ± 6.3 0.0 ± 0.1 5.1 ± 5.8 19.8 ± 7.5 0.7 ± 1.4 2.7 ± 4.2 17.1 ± 6.3 7.4 ± 4.1

real 8.7 ± 6.0 13.2 ± 7.6 0.0 ± 0.2 0.4 ± 0.9 19.5 ± 8.8 0.2 ± 0.6 0.5 ± 1.5 21.6 ± 14.2 3.8 ± 2.2
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Figure 3.2: Ratios of maximum continuous neg, pos turns in individual calls.

To reveal the relationship between call-level and turn-level CS, average frequencies

of pos, neu and neg turns were evaluated, see Table 3.3. The overall average turn

frequencies in a call were 26.3 (acted) and 21.0 (real). Table 3.3 indicates that the

distributions of turn-level CS labels were different in each call-level CS. Furthermore,

several interesting characteristics were found between call-level and turn-level CS; dis-

agreement of two-level CS values and proportion of turn-level CS. Though there were

almost no pos turns in neg calls, there were a few neg turns in some pos calls. In terms

of the proportion, the ratio of pos turns was usually less than 50 % even in pos calls.

This was true in both the real and the acted datasets. However, the frequencies of



3.3. Datasets 29

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

start end
neg
neu
pos

(a) call-neg

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

start end
neg
neu
pos

(b) call-neu

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

neg
neu
pos

start end
neg
neu
pos

(c) call-pos

Figure 3.3: Examples of turn sequences in the acted dataset.
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Figure 3.4: Examples of turn sequences in the real dataset.

pos and neg turns in the acted calls were slightly higher than those in the real calls.

It is considered that the types of emotions appearing in real contact center calls may

be biased. For example, most customers in technical support center tend to have low-

arousal emotions, i.e. an emotion lying in the low-arousal area on Russell’s circumplex

model [18] like satisfied, neutral and disappointed, while the acted calls include a fuller

variety of customer emotions such as delighted and enraged.

The frequencies of maximum continuous pos and neg turns were also investigated to

reveal contextual characteristics, see Figure 3.2. There were also common cues in both

the real and the acted dataset; neg turns in neg calls tended to continue longer than
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pos turns in pos calls. There were almost no neu and neg calls that had more than

three continuous pos turns. However, the continuity of neg turns differed between the

datasets. Several neu and pos calls containing neg turns continued for more than five

turns in the acted dataset, while such sequences did not exist in the real calls. These

findings suggest two hypotheses which will be useful in turn-level CS estimation. First,

turn-level CS strongly depends on contextual information of the call. Second, call-level

CS helps to identify turn-level CS because it is related to the continuity of turn-level

CS.

Finally, we investigated the changes in turn-level CS. Figures 3.3 and 3.4 show ex-

amples of sequences of turn-level CS. A line connecting two dots represents a turn.

The figure indicates that there were certain properties of turn-level CS changes in the

datasets. In neg calls, several continuous neg turns appear in arbitrary positions of the

calls. On the other hand, typical pos calls have pos turns in the middle and at the end

of the calls. It is considered that customers in pos calls tend to show positive attitudes

at the end of each topic and closing talk to express their gratitude, while in neg calls

they verbalize the bad feelings over some duration at any time. The figures also show

that there are several domain-independent categories in each call-level CS. For exam-

ple, neg calls may have three types; the customer has bad emotion entirely (first row),

in particular regions (from second to fifth rows) or with short positive response (sixth

row). neu calls include few or no pos or neg turns in the calls (first to third rows),

whose customers have negative feelings but recover (fourth row) or contain both pos

and neg turns but overall are neutral (fifth and sixth rows). pos calls can be catego-

rized into two; pos turns appear in the middle and end of calls (first to fourth rows),

or customers have negative feelings at first but recover and finally acquire good emo-

tion (fifth and sixth rows). These details indicate an important hypothesis for call-level
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Table 3.4: Results of N-gram modeling of turn-level CS.

Perplexity

dataset w/ call-level CS 1-gram 2-gram 3-gram 4-gram

acted 2.75 1.91 1.84 1.83

✓ 2.21 1.75 1.72 1.71

real 1.53 1.45 1.44 1.44

✓ 1.41 1.39 1.38 1.38

CS estimation; call-level CS can be identified only by the series of turn-level CS, and

the identification rule is slightly domain dependent.

To confirm the hypotheses listed above, we conducted two pre-experiments. The first

was N-gram modeling of the turn-level CS labels with or without call-level CS infor-

mation. The purposes were to measure the valid lengths yielding consistent contextual

information and the effectiveness of call-level CS. The task was predicting current

turn-level label from the previous N-1 labels. Speaker-open 8-fold cross validation was

employed. The N-gram model was trained by 7 folds and evaluated by the other 1 fold.

A single N-gram was trained and evaluated without the call-level CS condition. In

the case of with call-level CS information, N-gram models were trained and evaluated

separately in each call-level CS. Lengths of N-grams ranged from 1 to 4. The evalua-

tion measure was perplexity which reflects the ambiguity of turn-level CS prediction:

lower is better. The results are listed in Table 3.4. In both acted and real datasets,

perplexity decreased with longer context. There were significant differences from 1 to

3 grams in the acted and 1 to 2 grams in the real dataset (p < 0.05 in paired samples

t-test). Call-level CS information also reduced perplexity (p < 0.05). These results

demonstrate that utilizing certain length of context and call-level CS information is

effective in the turn-level CS estimation task.
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Table 3.5: Results of call-level CS estimation from turn-level CS ground truths.

acted real

Acc. macroF1 Acc. macroF1

Chance 0.333 0.329 0.333 0.263

MajorityClass 0.395 0.188 0.782 0.292

DominantTurn 0.548 0.513 0.808 0.467

FinalTurn 0.786 0.794 0.813 0.572

ULSTM in-corpus 0.880 0.889 0.903 0.840

cross-corpus 0.807 0.798 0.895 0.770

The second was call-level CS estimation from turn-level CS ground truths. This

investigated whether call-level CS can be identified from just turn-level CS. Cross-

corpus evaluations were also conducted to measure domain dependency. To learn a

series of turn-level CS, 1-layer unidirectional LSTM (ULSTM) with 64 hidden units

was used as the call-level CS estimation model. The input was the sequence of one-hot

representations of turn-level CS ground truths. The estimation model was trained by

minibatch training with a cross entropy-based loss function. The dropout ratio was

0.5. The minibatch size was 3 calls. Optimization rule was Adam [87] and learning rate

was 0.001. Speaker-open 8-fold cross validation was used in the evaluation. One subset

was test, another was development, and the remaining 6 were used as training data.

Early-stopping was realized by the development subset [88]. Evaluation measures were

accuracy (Acc.) and macroF1, which is the macro-average of the F1 values of each class.

Results are shown in Table 3.5. Chance and MajorityClass mean the chance ratio and

the results that all estimations lay in the majority class of the training set, respectively.

DominantTurn and FinalTurn represent the results yielded by selecting the dominant

class or the final turn’s class in each call as call-level CS. The table shows that a simple

rule such as selecting the dominant is insufficient. FinalTurn represents measurable
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performance in the acted dataset, but not in the real dataset. It is considered that this

is due to the differences in the frequencies of low-arousal emotional calls. We found

that some low-arousal calls like disappointed or frustrated calls showed neg turns only

in the middle of calls, which make it impossible to estimate call-level CS by FinalTurn.

Most of the calls in the real dataset were low-arousal ones, as shown in Table 3.3,

which provides a plausible reason for the degraded performances of FinalTurn when

applied to the real dataset. On the other hand, ULSTM-based estimation model trained

by in-corpus data attained around 90% accuracy in both datasets. Furthermore, the

performance still exceeded 80% with cross-domain training. These results indicate

that call-level CS can be evaluated from just turn-level CS information, and that the

estimation criteria from turn-level CS are slightly domain dependent.

3.4 Customer Satisfaction Estimation based on a

Hierarchical Multi-Task Model

This section describes a CS estimation method based on the HMT model. It esti-

mates both call-level and turn-level CS classes simultaneously. The key idea of the

proposed method is utilizing the characteristics of call-level and turn-level CS as re-

vealed in Section 3.3.2; contextual information, relationships of the two levels of CS

values, and domain independency. Two LSTM-RNNs are employed to capture contex-

tual information for turn-level and call-level CS. Estimated turn-level CS values are

directly used for call-level estimation. The two estimation models, call-level and turn-

level ones, are jointly optimized to acquire the relationship of two-level CS, similar

to multi task learning. Furthermore, the estimation model is adapted to a particular

domain by updating only the domain-dependent part of the model.
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The HMT model is inspired by a Joint Many-Task model, which was originally pro-

posed for natural language processing [82]. The difference is that the HMT model has a

chained structure and the upper network utilizes only the output of the lower network,

while the Joint Many-Task model is branched and the upper uses both lower-network

outputs and input features. It is reasonable to employ the HMT model for two-level CS

estimation because it is enough to evaluate call-level CS from turn-level CS information

alone, which enables the number of model parameters to be reduced. Another advan-

tage is that the training by the call-level label approach of the HMT model yields

correction of the turn-level estimation results, which indicates that training by just

call-level labels can improve not only call-level but also turn-level estimation.

3.4.1 The Hierarchical Multi-Task Model

Let X = [x1, · · · ,xN ] be a sequence of turn-level features in a call and N be the

total number of customer turns. xn includes information of not only the n-th customer

turn but also the previous agent turn and the surrounding backchannels, as described

in Section 3.4.4. Call-level and turn-level CS estimation are formulated as estimating

call-level label l(c) and the series of turn-level labels l(t) = [l
(t)
1 , · · · , l(t)N ] corresponds to

the turn-level features from X. Individual labels l
(t)
n , l(c) ∈ L where L is a set of CS

labels, e.g., {pos, neu, neg}. In the HMT model, estimated call-level and turn-level

labels are decided by all the turn-level features in a call:

l̂(c) = argmax
l(c)

P (l(c) | X,Θ), (3.1)

l̂(t)n = argmax
l
(t)
n

P (l(t)n | X,Θ), (3.2)

where Θ is a set of the parameters in the HMT model1.

1In this chapter, notation (t) means a variable for turn-level CS estimation. (c) is for call-level task.
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To estimate the n-th turn-level labels from the n-th turn-level features and the sur-

roundings, hidden representation of turn-level contextual information h
(t)
n is extracted

first. The extraction formula depends on whether the turn-level estimation situation

is online or batch (see Section 3.2). In the online situation, h
(t)
n is defined by the first

to the n-th turn-level features,

h(t)
n = ULSTM(x1, · · · ,xn;θ

(t)
h ), (3.3)

where ULSTM() is a unidirectional LSTM-RNN function and θ
(t)
h is the set of its

parameters. In the batch situation, all turn-level features in a call are available,

h(t)
n = BLSTM(x1, · · · ,xN , n;θ

(t)
h ), (3.4)

where BLSTM() is a bidirectional LSTM-RNN function.

The posterior probabilities are defined by the hidden representation with a linear

transformation layer and softmax function,

v(t)
n = LINEAR(h(t)

n ;θ(t)
v ), (3.5)

y(t)
n = SOFTMAX(v(t)

n ), (3.6)

where LINEAR() is a fully-connected linear transformation layer whose parameters are

θ
(t)
v ; SOFTMAX() is a softmax function. y

(t)
n represents the turn-level CS posterior

probability vector of the n-th turn. θ(t) = {θ(t)
h ,θ

(t)
v } is the parameter set of turn-level

CS estimation results yielded by turn-level features.

In call-level CS estimation, the HMT model utilizes estimated turn-level CS posteri-

ors y
(t)
n rather than turn-level features because the series of turn-level CS has sufficient

power to permit call-level estimation, as shown in Section 3.3.2. The hidden repre-

sentation of contextual information of estimated turn-level CS sequence h(c) is defined

as,

h(c) = LSTM(y
(t)
1 , · · · ,y(t)

N ;θ
(c)
h ), (3.7)
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Figure 3.5: The structure of the Hierarchical Multi-Task (HMT) model.

where LSTM is either unidirectional or bidirectional LSTM-RNNs with parameters of

θ
(c)
h . Similar to the turn-level estimation, posterior probabilities of call-level CS are

estimated by linear projection with softmax function,

v(c) = LINEAR(h(c);θ(c)
v ), (3.8)

y(c) = SOFTMAX(v(c)), (3.9)

where y(c) is the call-level CS posterior probability vector and θ
(c)
v is the parameter set

of the linear layer. θ(c) = {θ(c)
h ,θ

(c)
v } is the parameter set of call-level CS estimation

results yielded by estimated turn-level CS posteriors.

The structure of the proposed HMT model is shown in Figure 3.5. The following

sections show two types of training methodology for the HMT model: flat-start and

domain adaptation.
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Figure 3.6: The flow of joint optimization with task-wise pre-training of the HMT

model.

3.4.2 Training of the HMT Model

Two types of training, two-step training and joint optimization, are presented for

training the HMT model from scratch. In both methods, the model parameters Θ =

{θ(t),θ(c)} are updated by stochastic gradient descent with loss functions. The loss

functions of turn-level and call-level estimation are based on cross entropy,

Lt(θ
(t)) = − 1

N

N∑
n=1

∑
l
(t)
n ∈L

l(t)n logP (l(t)n | X,θ(t)), (3.10)

Lc(θ
(t),θ(c)) = −

∑
l(c)∈L

l(c) logP (l(c) | X,θ(t),θ(c)). (3.11)

The first, named two-step training, optimizes turn-level estimation parameters θ(t)

and call-level parameters θ(c) sequentially and independently. θ(t) is optimized at first

by turn-level estimation loss Eq. (3.10). Then θ(c) is updated with fixed turn-level

estimation parameters θ̄(t),

L(θ(c)) = Lc(θ̄
(t),θ(c)), (3.12)

where L(θ(c)) is the loss function used to acquire θ(c).
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The second is joint optimization with task-wise pre-training. All parameters are

jointly optimized by both labels in order to utilize the relationship of two-level CS values

to enhance estimation performance. The entire loss of the HMT model L(θ(t),θ(c)) is

represented as the weighted sum of Eq. (3.10) and (3.11),

L(θ(t),θ(c)) = αLt(θ
(t)) + (1− α)Lc(θ

(t),θ(c)), (3.13)

where α is a loss weight that controls the convergence of the individual estimation. In

preliminary works, we confirmed that the call-level estimation parts tend to converge

faster than the turn-level ones because call-level estimation is much easier. To stabilize

the HMT model training, a pre-training technique called task-wise pre-training is em-

ployed. First, turn-level estimations from turn-level features and call-level estimations

from turn-level ground truth labels are trained separately as pre-training operations.

The resulting pre-trained parameters are used as initial weights of the HMT model;

the whole model is then fine-tuned by the entire loss (Eq. (3.13)). The flow of joint

optimization with task-wise pre-training is shown in Figure 3.6.

3.4.3 Adaptation of the HMT Model

In domain adaptation, i.e., adjusting the HMT model to suit specific-domain calls,

we hypothesize that it is effective to update just the domain-specific part of the model.

Thus a new adaptation framework named call-net freezing is employed. It offers adap-

tation with both turn-level and call-level labels, and with call-level labels only. The

outline of the adaptation by call-net freezing is shown in Figure 3.7.

The results in Section 3.3.2 indicate that call-level CS estimation from turn-level

CS information is less domain independent. On the other hand, it is reported that

turn-level CS estimation will be rather domain dependent [44]. From these findings,
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Figure 3.7: Adaptation by the proposed call-net freezing.

we consider that it is suitable for domain adaptation of the HMT model to adjust

turn-level estimation criteria (domain dependent) while keeping constant the call-level

criteria (domain independent). This will be effective, especially with limited adaptation

data because the number of the parameters to be optimized is significantly decreased.

In call-net freezing, we use the well-known technique called layer freezing. Parameters

of turn-level estimation θ(t) are updated with fixed call-level estimation parameters θ̄(c).

The loss function with call-level and turn-level labels is given by,

L(θ(t)) = αLt(θ
(t)) + (1− α)Lc(θ

(t), θ̄(c)), (3.14)

which means that call-level loss is used for updating only turn-level estimation part.

θ̄(c) is constant before and after adaptation.

Furthermore, the HMT model adaptation is possible with just call-level labels. This

is because the HMT model has chained structures and updating by the call-level loss
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has the effect of correcting the estimation results of turn-level CS. The loss function

with just call-level labels is defined as follows,

L(θ(t)) = Lc(θ
(t), θ̄(c)). (3.15)

This indicates that only turn-level estimation sub-networks are updated by call-level

loss alone. Adaptation using only call-level labels is desirable in practice because call-

level labels have much lower annotation cost than turn-level labels.

3.4.4 Turn-level Features

The turn-level features used in the HMT model include prosodic, lexical and inter-

active features extracted from both customer and operator turns and backchannels.

Most are inspired by the conventional studies [1, 12,46]. We use hand-crafted features

in order to realize robustness even with limited amounts of training data.

Prosodic Features

Prosodic features include the information of fundamental frequency (F0), loudness,

and speech rate of a current customer turn. They reflect changes in the customer’s

pitch, power, talking speed and end-of-sentence stretching. It has 21 dimensions: mean,

std., max, min, range and ratio of start/end 500 ms mean to entire mean of cus-

tomer turn log F0, mean, std., and max of loudness, mean, std., max, min of first

derivative of log F0 and loudness, speech rate of customer turn and previous operator

turn (mora/sec), and duration of the end of phoneme of the target customer turn. The

speech rates and phoneme duration are obtained by automatic speech recognition.
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Lexical Features

As the lexical features, we use Bag-of-Words (BoW) of specific words in current cus-

tomer turn or the previous operator turn. All the words are obtained by automatic

speech recognition. Target words are empirically selected by three real contact center

supervisors from a previous study [46] to decrease domain dependency: automatic se-

lection of class-specific words like the entropy-based method [1] depend on the training

corpus. The lexical features have 12 dimensions: total number of words in the current

customer turn or previous operator turn, number of filler words, backchannel words,

appreciation and its emphasis words (e.g. ‘kindly’), personal pronoun in the current

customer turn, number of filler words, backchannel words, appreciation, humility, and

apology words in the previous operator turn. Filler words include ‘uh’ or ‘hmm’ and

backchannel words are ‘hai (yes in English)’, ‘wakarimashita (I see)’, etc.

Interactive Features

Interactive features include turn-taking, pause and backchannel information. In addi-

tion to the conventional methods [12], the proposed method utilizes the characteristics

of backchannels around current customer turn because backchannels are related to the

interests, politeness, and apology of customers and agents. The proposed method uses

11 dimensional interactive features: length of the target customer turn and the previous

operator turn, length of pause between the target customer turn and the previous/next

operator turn, length of interval between the target and previous customer turn, the

ratio of length of the target customer turn to the sum of previous operator and target

customer turn, frequency of customer and agent backchannels, average durations and

number of repeated words in customer backchannels, and the ratio of average F0 of

customer backchannels to customer turn. Backchannels are automatically determined
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Table 3.6: Overall accuracies and macroF1s of turn-level and call-level CS estimations.

acted real

Turn Call Turn Call

train method Acc. macroF1 Acc. macroF1 Acc. macroF1 Acc. macroF1

Chance 0.333 0.303 0.333 0.329 0.333 0.211 0.333 0.263

MajorityClass 0.605 0.251 0.395 0.188 0.920 0.319 0.782 0.292

SVM [12,36,44,48] 0.556 0.528 0.631 0.627 0.555 0.345 0.638 0.462

FCNN [38,50] 0.572 0.539 0.641 0.631 0.711 0.401 0.640 0.459

ULSTM 0.616 0.588 0.704 0.706 0.719 0.402 0.740 0.487

BLSTM 0.676 0.645 0.678 0.683 0.739 0.444 0.722 0.444

HMT (ULSTM + ULSTM) two-step 0.616 0.588 0.711 0.718 0.719 0.402 0.753 0.523

joint optim. 0.647 0.612 0.724 0.729 0.763 0.415 0.735 0.542

HMT (BLSTM + ULSTM) two-step 0.676 0.645 0.728 0.724 0.739 0.444 0.724 0.555

joint optim. 0.681 0.646 0.728 0.730 0.774 0.459 0.740 0.571

by the segmentation method shown in Section 3.2. The customer backchannels of the

target turn are defined as those between previous and target customer turns.

3.5 Experiments

We conducted two evaluation experiments; flat-start and domain adaptation. In

the flat-start evaluation, feature comparison and annotation harmonization assess-

ment were also conducted to investigate the effects of the input turn-level features

and ground-truth information.

3.5.1 Common Setups

The datasets shown in Section 3.3 were used in both evaluations. Performance was

evaluated by customer-open 8-fold cross validation. Each fold contained 3 or 4 unique

customers in the acted dataset, and the same number of unique customers as calls in

the real dataset. In each fold, the combinations of customers were selected by hand in

order to keep the similar proportions of pos / neu / neg calls as those of the entire corpus.
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Table 3.7: Comparisons of input turn-level features for turn-level and call-level CS

estimation.

acted real

Turn Call Turn Call

Acc. macroF1 Acc. macroF1 Acc. macroF1 Acc. macroF1

Chance 0.333 0.303 0.333 0.329 0.333 0.211 0.333 0.263

Pro 0.612 0.575 0.631 0.634 0.748 0.403 0.651 0.422

Lex 0.649 0.617 0.654 0.657 0.732 0.443 0.693 0.571

Int 0.597 0.547 0.538 0.550 0.777 0.428 0.688 0.469

Pro+Lex 0.665 0.635 0.704 0.702 0.765 0.441 0.711 0.559

Pro+ Int 0.659 0.614 0.664 0.668 0.772 0.419 0.711 0.483

Lex+ Int 0.664 0.628 0.664 0.673 0.774 0.466 0.695 0.572

Pro+Lex+ Int 0.681 0.646 0.728 0.730 0.774 0.459 0.740 0.571

We used one fold as the test, another one as the development, and the remaining six

folds as the training set.

In turn-level feature extraction, frame length of F0 and loudness were set at 64 ms

and 5 ms shift, respectively. The F0 extraction method was based on dominant

harmonic components [89]. A DNN-HMM acoustic model with a large-vocabulary

weighted finite-state transducer language model was used to obtain words for lexical

features. The acoustic model had 8 fully-connected hidden layers with 2048 nodes

and 3072 outputs. Both acoustic and lexical models were trained by several hundred

hours of transcribed real contact center calls. The speech recognition decoder was

VoiceRex [90, 91]. All turn-level features were normalized against the training set to

zero mean and unit variance.

We employed overall accuracy and macroF1, the macro-averaged F-measures of all

classes, as evaluation measures. We considered that macroF1 was a more impor-

tant indicator of performance than accuracy because both datasets were highly class-

imbalanced. In class imbalanced datasets, accuracy is generally high when all the

estimated results lie in the majority class, but the estimator lacks estimation robust-

ness [92].
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3.5.2 Flat-start Evaluation

A Support Vector Machine (SVM) and Fully-Connected Neural Networks (FCNN)

were employed as baseline classifiers, following several studies [12,36,38,44,48,50]. The

inputs were individual turn-level features for turn-level estimation and their statis-

tics (mean and standard deviation in a call) for call-level estimation. The kernel of

SVM was a radial basis function and its hyper-parameters were optimized in each vali-

dation by grid-search with the training and development sets. The structure of FCNN

was 3-layer fully-connected with 128 units. The activation function was rectifined lin-

ear. Minibatch size was 16 and optimization method was Adam [87]. The learning rate

was 0.0005. SVM and FCNN were implemented on LIBSVM [93] and pytorch [94],

respectively. To mitigate the class imbalance problem [95], the inverse values of the

class frequencies were used as class weight in the training step of both methods2.

Four model variants were compared to the baselines: ULSTM, BLSTM and two

HMT models (ULSTM+ULSTM, BLSTM+ULSTM). The first two estimated two-level

CS independently from turn-level features. The structure was 1-layer unidirectional or

bidirectional LSTM with 128 units, 1-layer fully-connected with 3 units (output dimen-

sions) and softmax layer. The last two stacked turn-level and call-level estimation mod-

els hierarchically, as shown in Figure 3.5. They were constructed by 1-layer unidirec-

tional or bidirectional LSTM with 128 units, 1-layer fully-connected with 3 units, soft-

max (these are for turn-level estimation), 1-layer unidirectional LSTM with 64 units,

1-layer fully-connected with 3 units and softmax layer (for call-level estimation). The

HMT models were trained by two-step training or joint optimization, see Section 3.4.2.

In joint optimization of the HMT models, training and development data were the

2Preliminary experiments found that most of the estimation results without class weight became

neu in the acted dataset.
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same in both task-wise pre-training and fine-tuning. Two-step training acquired one-

way feedback from turn-level to call-level CS, while joint optimization employed mutual

interaction. Note that ULSTM and HMT (ULSTM+ULSTM) were suitable for on-

line estimation of turn-level CS, while BLSTM and HMT (BLSTM+ULSTM) were

effective for batch estimation, as described in Section 3.4.1. The dropout ratio was

0.5. Minibatch size was 3 calls in all conditions. Adam [87] was used for optimiza-

tion. Learning rates were 0.0001 in joint optimization and 0.0005 in all other training

approaches. These hyper-parameters were evaluated by grid-search and the combi-

nation that yielded the highest accuracies over all validations in both datasets were

used as the final results. The variants of evaluated hyper-parameters were as follows;

32 / 64 / 128 / 256 hidden units and 1 / 2 / 3 layers in each ULSTM and BLSTM, 0.0 / 0.5

dropout ratio, 3 / 6 / 10 calls in minibatch size, Adam/momentumSGD optimization

with 0.0001 / 0.0002 / 0.0005 / 0.001 learning rate. We tried small models, small batch-

sizes and strong regularization because the amount of training data was quite limited.

Loss weight was 0.6 as it yielded the highest performance among weights ranging from

0.1 to 0.9. Inverse class frequency in the training data was used as the class weight

of the cross-entropy based loss function [96]. Early-stopping was triggered by the

losses of the development set. All the proposed model variants were implemented by

pytorch [94].

Results are shown in Table 3.6. Chance andMajorityClass take the same meanings as

in Section 3.3.2; the chance ratio and the results that all estimations lay in the majority

class of the training set, respectively. Note that turn-level results of ULSTM/BLSTM

and HMT with two-step training were the same because they used the same model

structure, input and training condition.

The results of call-level estimation are discussed first. Comparing SVM, FCNN, UL-
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STM and BLSTM, all variants of LSTM-based models achieved higher performance in

both datasets; the difference was statistically significant (p < 0.05 in McNemar’s test).

These indicate that contextual information was clearly effective. However, BLSTM

was worse than ULSTM in call-level task. It is considered that the amount of training

data for call-level estimation was so limited that ULSTM was more suitable as its pa-

rameters are small. Compared to ULSTM, the HMT variants with two-step training

showed better performance. This indicates that estimated turn-level CS values are

capable of call-level estimation even though they have quite limited dimensionality.

Finally, the training methods of the HMT model were compared. Joint optimization

attained higher macroF1s than two-step training in both HMT models and both tasks.

However, the differences were not significant (p > 0.05). One possible explanation is

that the call-level estimation data was limited. Further investigation with a greater

volume of calls is a future task.

Next, turn-level estimation performances were compared. Similar to call-level es-

timation, all LSTM-based methods outperformed SVM with statistically significant

differences, especially BLSTM-based models. It is considered that contextual informa-

tion is useful even in turn-level CS estimation, and that batch estimation offers better

performance than online evaluation. The improvements offered by joint optimization

to two-step learning were small in the acted calls but significantly large (p < 0.05) in

the real calls. It is considered that joint optimization may give some feedback from

call-level CS labels, which made the HMT model more robust.

We summarize here the results of the flat-start evaluation: Contextual information

is clearly effective in both types of estimation. The series of turn-level CS estimation

results matches the discrimination performance of call-level CS. Joint optimization,

which attempts to learn the relationships of two-level tasks, is useful in enhancing the



3.5. Experiments 47

Table 3.8: Annotation harmonization results. Bold means the best results in each CS

estimation model.

acted real

Turn Call Turn Call

ground truths Acc. macroF1 Acc. macroF1 Acc. macroF1 Acc. macroF1

FCNN 1 annot. 0.545 0.520 0.588 0.563 0.680 0.393 0.648 0.463

w/o harmo. 0.550 0.525 0.618 0.599 0.695 0.396 0.648 0.469

w/ harmo. 0.572 0.539 0.641 0.631 0.711 0.401 0.640 0.460

HMT 1 annot. 0.649 0.628 0.724 0.717 0.777 0.447 0.743 0.549

(BLSTM + ULSTM) w/o harmo. 0.671 0.642 0.714 0.715 0.773 0.451 0.721 0.551

w/ harmo. 0.681 0.646 0.728 0.730 0.774 0.459 0.740 0.571

Table 3.9: Domain adaptation results. Target domain is the real dataset and source

domain is the acted dataset.

real-full real-half

Turn Call Turn Call

label Acc. macroF1 Acc. macroF1 Acc. macroF1 Acc. macroF1

- No adapt 0.466 0.336 0.533 0.465 0.466 0.336 0.533 0.465

call + turn Flat-start 0.774 0.459 0.740 0.571 0.788 0.432 0.714 0.490

Fine-tune 0.767 0.469 0.772 0.619 0.739 0.448 0.724 0.557

Call-net freezing 0.780 0.474 0.764 0.606 0.753 0.457 0.719 0.568

call Fine-tune 0.783 0.465 0.774 0.597 0.764 0.459 0.735 0.558

Call-net freezing 0.801 0.481 0.780 0.620 0.793 0.475 0.738 0.558

HMT model performance in both tasks.

3.5.3 Feature Comparison Evaluation

To reveal the ability of each type of turn-level feature, feature comparison evaluations

were conducted. Prosodic (Pro), Lexical (Lex), Interactive (Int) features and their

combinations were taken as the turn-level input features. The classifier was for the

batch estimation; the HMT model with BLSTM for turn-level estimation and ULSTM

for call-level estimation. The model structure and the training conditions were the

same as in the previous evaluation.

Table 3.7 shows the feature comparison results. Among the individual features,
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lexical features showed the best macroF1 value. We consider that some words appeared

infrequently but were decisive cues in terms of estimation. Prosodic features were worst

for the real dataset though they were better than interactive features in acted calls.

This indicates that real calls may have much wider variation in customer speaking style

than the acted calls. This also was found in the combinations of the feature subsets;

The macroF1 values with and without prosodic features were close for the real dataset.

However, most combinations of features yielded better performance than the features

in isolation.

The conclusions of this evaluation are as follows. The lexical and interactive fea-

tures are the first and the second most effective pieces of information in both tasks,

respectively. The prosodic features may be of little use in analyzing real calls.

3.5.4 Annotation Harmonization Evaluation

The effects of harmonizing annotations were also investigated. If the harmoniza-

tion only slightly impacts CS estimations, a single annotator is sufficient to train the

classification model, which is desired to reduce annotation cost.

Three types of the ground truths were compared; 1 annotator, without harmoniza-

tion, and with harmonization. For 1 annotator, one of two annotators was randomly

selected for every call and their call-level/turn-level CS classes were used as the ground

truth. This is equivalent to having several annotators but every call is annotated by

just one of them. Without harmonization meant that all calls have two ground truths

and they treated as different data. With harmonization was described in Section 3.3.1

with the same results in Section 3.5.2. These ground truths were used only in the

training and the development set and those in the test set were harmonized. FCNN

and HMT (BLSTM+ULSTM) with joint optimization were used as the CS estimation
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model. All hyper-parameters were the same as those in Section 3.5.2.

Table 3.8 presents the results. In the acted dataset, harmonization yielded the best

accuracies and macroF1s. The differences in accuracy between 1 annotator and with

harmonization were significant except for call-level estimation by the HMT model (p <

0.05). On the other hand, in the real dataset the macroF1s with harmonization were

mostly better than those of 1 annotator and without harmonization, the differences

were not significant. Comparing the results of harmonization with those of 1 annotator

and without harmonization, harmonization attained higher precision but lower recall

in both pos and neg classes. It is considered that harmonization increased neu samples

and decreased pos and neg samples in the training data, which is problematic in the

real dataset because the number of pos and neg samples were limited. This issue may

be resolved if more pos and neg calls and turns are available.

These results indicate that the harmonization of annotations improve CS estimation

performance. However, the effects of the harmonization are limited if the dataset

contains few pos and neg samples.

3.5.5 Domain Adaptation Evaluation

Finally, we evaluated the domain adaptation performance. The source domain was

the acted dataset and the target was the real domain. This was done because the acted

calls contained a wide range of satisfied, neutral and dissatisfied calls, while the real

dataset exhibited a relatively small range of emotion. Two adaptation dataset sizes,

full and half, were used to measure the performance with large and small amounts

of adaptation data, respectively. Full meant the entire training set and half meant

a random sampling. Furthermore, two types of ground-truth information, with call-

level and turn-level labels and with call-level label only, were given in the adaptation
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scenario.

The baselines were no adaptation, flat-start training, and fine-tuning of the HMT

model. No adaptation presented the model trained by the source domain dataset.

Flat-start was the model trained by the adaptation data from scratch. Fine-tuning

was updating all the parameters of the model by the adaptation data. The proposed

adaptation was the call-net freezing shown in Section 3.5.5. We evaluated batch esti-

mation situation, thus the model was the HMT with BLSTM for turn-level task and

ULSTM for call-level. The learning rate was 0.0005 in flat-start training and 0.0001

in fine-tuning and call-net freezing. The remaining conditions such as minibatch size

followed those of Section 3.5.2.

Table 3.9 presents the adaptation results. First, no-adaptation models yielded low

accuracy and macroF1 in both call-level and turn-level estimation. This indicates a

significant model mismatch given the different domains. In the case of adaptation with

call-level and turn-level labels, macroF1s of the fine-tuning and call-net freezing were

higher than those achieved by flat-start training. This was observed in both full and

half adaptation sets. It is considered that the HMT model could learn certain general

characteristics of call-level and turn-level CS (both acted and real calls), which were

utilized in adaptation. Comparing call-net freezing with fine-tuning by two-level la-

bels, call-net freezing showed better macroF1s except for call-level estimation with full

dataset. This suggests that call-net freezing worked well, especially if the adaptation

data is limited. Finally, we mention adaptation with just call-level labels. Interest-

ingly, fine-tuning and call-net freezing with call-level labels improved not only call-level

estimation performance but also that of the turn-level task. This indicates that the

HMT model trained by the acted dataset learnt the relationship between call-level

and turn-level CS, and thus corrected the turn-level estimation results yielded by the
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call-level labels. Note that in the full dataset, call-net freezing with call-level labels

alone showed better performance than that with both levels of labels. One possible

explanation is that the turn-level labels were extremely class-imbalanced (92% were

neu turns) and the use of turn-level labels may lead to overfitting of pos and neg turns.

Further evaluation by more class-balanced calls is desirable as a future task.

3.6 Summary

In this chapter, we presented a novel CS estimation method that evaluated both

call-level and turn-level CS simultaneously to better analyze contact center dialogues.

Data analyses using acted and real calls elucidated three important characteristics;

dependency of context, relationship between call-level and turn-level CS, and domain

independency in call-level CS estimation from the series of turn-level CS degree. The

proposed method, called the Hierarchical Multi-Task (HMT) model, well utilized these

characteristics. It employs two LSTM-RNNs to capture contexts in turn-level and call-

level estimations. These two models are hierarchically stacked and jointly optimized to

learn the relationship between the two tasks. Domain adaptation uses call-net freez-

ing, which maintains the call-level CS estimation part of the model, because it was

less domain dependent. Three experiments, flat-start evaluation, feature comparison

and domain-adaptation, were conducted. The HMT model was clearly superior to the

conventional SVM or fully-connected NN-based classifier for both call-level and turn-

level CS estimation. A feature comparison revealed that lexical features yielded the

greatest contribution, while dialog features were also useful. Adaptation experiments

confirmed that different domains incurred significant model mismatch, and the pro-

posed adaptation approach achieved the highest performance. Future work includes

evaluations with larger quantities of more balanced contact center calls or self-reported
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labels. Other directions are improving the online estimation performance of turn-level

CS and introducing new lexical features without heuristics.
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4 Basic Emotion Classification in

Natural Speech based on

Listener-Dependent Emotion

Perception Models

4.1 Introduction

Human speech is the most basic and widely-used form of daily communication.

Speech conveys not only linguistic information but also other factors such as speaker

and emotion, all of which are essential for human interaction. Thus, speech emotion

recognition (SER) is an important technology for natural human-computer interaction.

There are a lot of SER applications such as voice-of-customer analysis in contact cen-

ter calls [44,97], driver state monitoring [2] and human-like responses in spoken dialog

systems [4].

SER can be categorized into two tasks: dimensional and categorical emotion recog-

nition. Dimensional emotion recognition is the task of estimating the values of several

emotion attributes present in speech [5]. Three primitive emotion attributes, i.e. va-

lence, arousal, and dominance are commonly used [6]. Categorical emotion recognition

is the task of identifying the speaker’s emotion from among a discrete set of emotion

categories [7]. The ground truth is defined as the majority of perceived emotion class
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as determined by multiple listeners. Comparing these two tasks, categorical emotion

recognition is more suitable for most applications because it is easy to interpret. This

chapter aims to improve categorical emotion recognition accuracy.

A large number of SER methods have been proposed. One of the basic approaches is

based on utterance-level heuristic features including the statistics of frame-level acous-

tic features such as fundamental frequency, power, and Mel-Frequency Cepstral Coeffi-

cients (MFCC) as determined by a simple classifier [8,52]. Though they can recognize

several typical emotions, their performance is still far from satisfactory because emo-

tional cues exhibit great diversity, which demands the use of hand-crafted features

with simple criteria. In contrast to this approach, several recent studies have achieved

remarkable improvements through the use of Deep Neural Network (DNN)-based clas-

sifiers [9,10,13,23,24,53,98–101]. The main advantage of DNN-based classifiers is that

they can learn complex cues of emotions automatically by combining several kinds of

layers. Recurrent Neural Network (RNN)-layers have been used to capture the con-

textual characteristics of utterances [100, 101]. Attention mechanism has also been

employed to focus on the local characteristics of utterances [9, 101]. Furthermore,

DNN-based models can utilize low-level features, e.g. log power-spectrogram or raw

waveform, which have rich but excessively complex information that simple classifiers

are unable to handle [7, 13].

However, SER is still a challenging task despite these advances. One of the difficul-

ties lies in handling two types of individuality: speaker and listener dependencies. The

way in which emotions are presented strongly depends on the speaker. It is reported

that prosodic characteristics such as pitch and laryngealization differ among speak-

ers [62]. This is similar in emotion perceptions, and depends on age [68], gender [69]

and cultures [70] of listeners. Given these issues, speaker dependency has often been
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considered for SER [64,65]. However, the dependency of listeners has received little at-

tention in SER tasks even though it influences the determination of the majority-voted

emotions.

This chapter presents a new SER framework based on Listener-Dependent (LD)

models. The proposed framework aims to consider the individuality of emotional per-

ceptions. In the training step of the proposed method, LD models are constructed so

as to learn criteria for capturing the emotion recognition attributes of individual lis-

teners. This allows the LD models to estimate the posterior probabilities of perceived

emotions of specific listeners. Majority-voted emotions can be estimated by averaging

these posterior probabilities as given by LD models. Inspired by domain adaptation

frameworks in speech processing, three LD models are introduced: fine-tuning, auxil-

iary input, and sub-layer weighting. The fine-tuning method constructs as many LD

models as listeners, while the remaining models cover all listeners by a single model.

We also propose adaptation frameworks that allow the LD models to handle unseen

listeners in the training data. Experiments on two emotional speech corpora show the

individuality of listener perception and the effectiveness of the proposed approach. The

main contributions of this chapter are as follows:

1. A scheme to recognize majority-voted emotions by leveraging the individuality of

emotion perception is presented. To the best of our knowledge, this is the first

work to take listener characteristics into consideration for SER.

2. The performance of listener-oriented emotion perception is evaluated in addition to

that of majority-voted emotion recognition. The proposed LD models show better

performance than the conventional method in both metrics, which indicates that

the proposed scheme is suitable for estimating not only majority-voted emotions,

but also personalized emotion perception.
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Figure 4.1: An example of the conventional emotion recogntion model based on direct

modeling of majority-voted emotion.

This chapter is organized as follows. Conventional emotion recognition is shown in

Section 4.2. The proposed framework based on LD models is shown in Section 4.3.

Evaluation experiments are reported in Section 4.4 and the conclusion is given in

Section 4.5.

4.2 Emotion Recognition by Majority-Voted Model

This section describes the conventional emotion recognition approach based on DNN

model [9, 53]. In this chapter, we call this model the majority-voted model because it

directly models majority-voted emotion of multiple listener perceptions.
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Figure 4.2: Overview of the proposed majority-voted emotion recognition based on

Listener-Dependent (LD) models.

Let X = [x1, . . . ,xT ] be the acoustic features of an input utterance and T be their

total length. C = {1, · · · , K} is the set of target emotion indices, e.g. 1 means

neutral and 2 is happy. K is the total number of target emotions. The task of SER is

formulated as estimating the majority-voted emotion of utterance c ∈ C from X,

ĉ = argmax
c

P (c|X), (4.1)

where ĉ is the estimated majority-voted emotion. P (c|X) is the posterior probability

indicated by the input utterance. The ground truth of majority-voted emotion c is

defined as the dominant choice of multiple listener’s perception results,

c ≡ argmax
k

∑
l∈L

f(c(l) = k), (4.2)

where c(l) ∈ C is the perceived emotion of human listener l 1. f(·) is a binary function of

1In this chapter, notation (l) means a listener-dependent variable.
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emotion presence / absence, f(c(l) = k) = 1 if l perceived the k-th target emotion from

the utterance, otherwise 0. L is a set of the listeners annotated emotion perceptions

given the input utterance, where L ⊂ L and L is a set of listeners in the training data.

Note that the set of the listeners, L, can vary for each utterance in SER task.

The posterior probabilities of the majority-voted emotions y = [P (c = 1|X), · · · , P (c =

K|X)]⊤ are evaluated by the estimation model composed of an encoder and decoder.

An example of the estimation model is shown in Fig. 4.1. The encoder projects an

arbitrary length of acoustic features X into a fixed-length hidden representation in

order to extract context-sensitive emotional cues. It consists of CNN, BLSTM, and

self-attention layers such as a structured self-attention network [102]. The decoder esti-

mates y from the hidden representation. It is composed of several Full-Connected (FC)

layers.

The parameters of the estimation model are optimized by stochastic gradient descent

with cross entropy loss,

L = −
∑
c

q(c) logP (c|X), (4.3)

where q(·) is the reference distribution. q(c = k) is 1 if the majority-voted emotion is

the k-th target emotion, otherwise 0.

4.3 Emotion Recognition by Listener Dependent

Models

This section proposes a majority-voted emotion recognition framework based on LD

models. The key idea of our proposal is to consider the individuality of emotion per-

ception. Every majority-voted emotion is determined from different sets of listeners in
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the SER task. However, the characteristics of emotional perceptions vary with the lis-

tener. Direct modeling of the majority-voted emotion will result in conflating multiple

different emotion perception criteria, which may degrade estimation performance. To

solve this problem, the proposed method constructs LD models to learn listener-specific

emotion perception criteria.

This framework determines the posterior probability of majority-voted emotion by

averaging the posterior probabilities of the listener-dependent perceived emotions,

P (c|X) =
1

NL

∑
l∈L

P (c(l)|X, l), (4.4)

where NL is the total number of listeners L. In vector representation,

y =
1

NL

∑
l∈L

y(l), (4.5)

where y(l) = [P (c(l) = 1|X, l), · · · , P (c(l) = K|X, l)]⊤ is the listener-dependent poste-

rior probability vector evaluated by the LD model.

In this thesis, three LD models are introduced: fine-tuning, auxiliary input, and sub-

layer weighting. All of them are inspired by adaptation techniques in speech processing.

The proposed frameworks based on LD models are overviewed in Fig. 4.2.

4.3.1 Model Overview

Fine-Tuning based Model

A Listener-Independent (LI) model is retrained with specific listener training data to

create a LD model. This is inspired by fine-tuning based domain adaptation in speech

recognition [74].

Two-step training is employed. First, the LI model is trained with all utterances and

their listeners in the training data. Listener-wise annotations are used for the reference
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distributions without distinguishing among listeners. The trained LI model outputs

listener-independent posterior probabilities yLI. Second, the LI model is retrained

with a particular listener’s labels and utterances. This yields as many isolated LD

models as there are listeners in the training data.

The optimization methods of LI / LD models are cross-entropy loss with listener-

dependent perceived emotion, see as Eq. (4.3),

L = −
∑
c(l)

q(c(l)) logP (c(l)|X, l). (4.6)

Auxiliary Input based Model

The second model adapts particular layers of the estimation model through the

auxiliary use of listener information. This is inspired by speaker adaptation in speech

recognition [76] and speech synthesis [77].

One-hot vector of listener l, v(l), is used to enhance acoustic features. v(l) is projected

into listener embedding vector e(l) by an embedding layer,

e(l) = σ(Wev
(l) + be), (4.7)

where We, be are the parameters of the embedding layer. σ is an activation function

such as hyperbolic tangent. Then e(l) is used as the auxiliary input of the adaptation

layers, named Auxiliary Input-based Adaptation Layers (AIALs), in the decoder so as

to adjust the decoder to the chosen listener,

ha,o = Wa

[
h⊤

a,i , e
(l)⊤]⊤ + ba, (4.8)

where ha,i,ha,o are the input and the output of the AIAL, respectively, and Wa, ba are

the parameters. Note that the embedding layer, the encoder and decoder are optimized

jointly.



4.3. Emotion Recognition by Listener Dependent Models 61

The advantage of the auxiliary input based approach is that it offers greater stability

than fine-tuning based models. There are two reasons for this. First, it has fewer

parameters than fine-tuning based models. The fine-tuning models have to store as

many encoders and decoders as there are listeners. However, auxiliary input based

models share the encoder and decoder among all listeners, which suppresses the number

of parameters. Second, the auxiliary input model can utilize the similarity of listeners.

The fine-tuning models learn for just particular listeners. On the other hand, similar

listeners will be mapped into similar latent vectors by the projection function, which

reinforces the encoder’s ability to learn listener-dependent emotion perception.

Note that only the decoder of the LD model is adapted to the selected listener. We

consider that every listener perceives the same emotional cues from acoustic features,

e.g. pitch raise / fall and fast-talking, and decision making from the emotional cues

depends on listeners.

Sub-Layer Weighting based Model

The sub-layer weighting approach combines multiple projection functions to adapt

to the listener. This is inspired by Context Adaptive DNN (CADNN) proposed for

source separation [78].

Sub-layer Weighting-based Adaptation Layers (SWALs) are used to adapt the de-

coder to the selected listener. SWAL consists of multiple FC sub-layers,

hs,o =
M∑

m=1

α(l)
m (Ws,mhs,i + bs,m) , (4.9)

where hs,i,hs,o are the input and output of the SWAL. Ws,m, bs,m is the parameters

of the m-th sub-layer and M is the total number of sub-layers. α
(l)
m is the adaptation
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Figure 4.3: Structure of the Sub-layer Weighting-based Adaptation Layer (SWAL).

weight associated with the selected listener,

α(l) = SOFTMAX(Wev
(l) + be), (4.10)

where α(l) = [α
(l)
1 , · · · , α(l)

M ]⊤ is an adaptation weight vector determined by listener

representation v(l) and SOFTMAX(·) is the softmax function. The structure of the

SWAL is shown in Fig. 4.3. The model parameters including the embedding layer,

Eq. (4.10), are jointly optimized as the auxiliary input approach.

The main advantage of sub-layer weighting is that it is more expressive than aux-

iliary input based models. Listener-dependent estimation is conducted by means of

combining the perception rule of embedded listeners. However, it will require more

training data than the auxiliary input-based approach because it has more parameters.

4.3.2 Adaptation to a New Listener

The LD models can be directly applied to listener-closed situations, i.e. evaluation

listeners are present in the training data. Though common SER tasks are listener-

closed, SER in practice is listener-opened so evaluation listeners are not included in

the training set. Our solution is to propose adaptation methods that allow the LD

models to handle open listeners using a small amount of adaptation data.
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The adaptation for the fine-tuning based LD model can be achieved by the retraining

method that is the same as the second step of the flat-start training of the model. The

LI model constructed by the training set is fine-tuned using the adaptation utterances

of the particular listener.

The auxiliary input and sub-layer weighting based LD models adapt to a new listener

to estimate the most similar listener code in the training listeners. Let v̂(l) and u(l)

be the estimated listener code and its indicator whose sizes are the same as v(l). The

initial value of u(l) is a zero vector. u(l) is updated by backpropagating the loss of the

adaptation data while freezing all the model parameters, as shown in Fig. 4.4. Note

that the proposed adaptation does not update v̂(l) directly so as to restrict that the sum

of v̂(l) to be 1 and all the dimensions to be non-negative, which is the same constraint

as v(l) in the training step. After the estimated listener vector v̂(l) is obtained from

the adaptation data, it is fed to the LD models as the listener code, and the posterior

probabilities of the perceived emotion of the new listener are derived. This approach

is similar to those proposed in speech recognition [103].

4.4 Experiments

We evaluated the proposed LD models in two scenarios. The first was a flat-start

evaluation. The estimation models were trained from scratch and evaluated by listeners

present in the training dataset, i.e. a listener-closed condition. The second was an

adaptation evaluation. It was a listener-open condition; the utterances and listeners

separated from the training data were used for the adaptation and evaluation data to

investigate estimation performance for unseen listeners.
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Figure 4.4: Adaptation for the auxiliary input-based LD model.

4.4.1 Datasets

Two large SER datasets, Interactive Emotional Dyadic Motion Capture (IEMO-

CAP) [104] and MSP-Podcast [105], were used in evaluating the proposal. IEMOCAP

and MSP-Podcast contains acted and natural emotional speech, respectively. We se-

lected four target emotions, neutral (Neu), happy (Hap), sad (Sad) and angry (Ang).

All non-target emotion classes in the datasets were set as other (Oth) class.

IEMOCAP contains audiovisual data of 10 skilled actors (5 males and 5 females) in

five dyadic sessions. The database consists of a total of 12 hours of English utterances

generated by improvised or scripted scenarios specifically written to represent the emo-

tional expressions. As in several conventional studies [9, 23, 54, 66, 99], we used only
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Table 4.1: Number of utterances in IEMOCAP.

Neu Hap Sad Ang Oth Total

Majority 1099 947 608 289 0 2943

Listener 1 412 1166 589 284 456 2907

2 951 876 586 269 99 2781

3 1225 717 324 155 150 2571

rest 226 119 113 56 56 570

audio tracks of the improvised set since scripted data may contain undesired contextual

information. There are six listeners in the corpus and every utterance was annotated

by three of them. The annotated categorical emotion labels are 10: neutral, happy, sad,

angry, disgusted, excited, fearful, frustrated, surprised, and other. We combine happy

and excited into Hap class in accordance with conventional studies [10, 53]. Though

listeners were allowed to give multiple emotion labels to each utterance, to evaluate

listener-wise emotion perception performance we unified them so that all listeners la-

beled one emotion per utterance. The unification rule was to select the majority-voted

emotion if it is included in the multiple annotations, otherwise the first annotation

is the unique perceived emotion. The listeners who gave fewer than 500 annotations

were clustered as the “rest listeners” because they provided too little information to

support learning listener-dependent emotion perception characteristics. Finally, the

utterances whose majority-voted emotion is one of the target emotions were used to

form the evaluation dataset. The numbers of utterances are shown in Table 4.1. The

estimation performances were compared by leave-one-speaker-out cross-validation; one

speaker was used for testing, another for validation, and the other 8 speakers were used

for training.

MSP-Podcast contains English speech segments from podcast recordings. Collected
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Table 4.2: Number of utterances in MSP-Podcast.

Neu Hap Sad Ang Oth Total

Majority 22681 12302 2351 2893 0 40227

Listener 1 5475 380 27 59 45 5986

2 1130 1026 120 69 800 3145

3 421 1072 191 128 440 2252

· · · · · ·
154 78 37 4 2 27 148

rest 74524 57200 12459 14891 44470 203544

from online audio shows, they cover a wide range of topics like entertainment, politics,

sports, etc. We used Release 1.7 which contains approximately 100 hours of speaking

turns. Annotations were conducted by crowdsourcing. There are 11010 listeners and

each utterance was annotated by at least three listeners (6.7 listeners per utterance on

average). This dataset has two types of emotion annotations, primary and secondary

emotions; we used only the primary emotions as listener-wise perceived emotions. The

variety of annotated primary emotions consisted of neutral, happy, sad, angry, disgust,

contempt, fear, surprise, and other. We used the utterances whose majority-voted

emotions were one of the target emotions. A predetermined speaker-open subset was

used in the flat-start evaluation; 8215 segments from 60 speakers for testing, 4418

segments from 44 speakers for validation, and the remaining 25332 segments from more

than 1000 speakers for training. The listeners who gave fewer than 100 annotations

in the training set were clustered as “rest listeners”, same as IEMOCAP. The total

numbers of emotional utterances are shown in Table 4.2.

To clarify the impact of listener dependency on emotion perception, we first investi-

gated the similarity of listener annotations. Fleiss’ and Cohen’s kappa coefficients were

employed as the similarity measures of the overall and the individual pairs of listen-
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ers, respectively. The coefficients were calculated through 5-class matching (4 target

emotions + Oth) from only the utterances in the evaluation dataset. Cohen’s kappa

coefficients of the listener pairs in which both listeners annotated less than the same

20 utterances were not evaluated (‘-’ in results). Fleiss’ kappa were 0.57 in IEMO-

CAP and 0.35 in MSP-Podcast. There are two reasons for the lower consistency rate

of MSP-Podcast. First, MSP-Podcast speech segments are completely natural, unlike

IEMOCAP utterances which contained acted speech; this increased the ambiguous

emotional speech in MSP-Podcast. Second, MSP-Podcast listeners will have larger

diversity than those of IEMOCAP. All the listeners in IEMOCAP are students in the

same university [104]. Cohen’s kappa coefficients of IEMOCAP and MSP-Podcast lis-

teners are shown in Fig. 4.5. It is shown that listener 2 showed relatively high similarity

with listeners 1 and 3, while listeners 1 and 3 showed low similarity in IEMOCAP. The

MSP-Podcast result showed the same property. Listener 1 showed high similarity with

listeners 4, 9, 10, but low similarity with the remaining listeners. Listener 6 was similar

to listeners 4 and 5. These indicate that emotion perception depends on listeners, and

that there are several clusters of emotion perception criteria.

4.4.2 Flat-Start Evaluation

Setups

Log power spectrograms were used as acoustic features. The conditions used in ex-

tracting spectrograms followed those of conventional studies [23,106]. Frame length and

frame shift length were 40 ms and 10 ms, respectively. The window type was Hamming

window. DFT length was 1600 (10Hz grid resolution) and we used 0-4 kHz frequency

range, which yielded 400-dimensional log power spectrograms. All the spectrograms
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Figure 4.5: Cohen’s kappa coefficients of listener annotations.

were z normalized using the mean and variance of the training dataset.

The baseline was the majority-voted emotion recognition model described in Sec-

tion 4.2. An ensemble of multiple majority-voted models with different initial param-

eters was also employed to compare with the proposed method that unifies several

outputs of LD models. The number of ensembles was the average number of listeners

per utterance, i.e. 3 and 7 in IEMOCAP and MSP-Podcast, respectively. The structure

of the baseline is shown in Table 4.3. Each CNN layer was followed by batch normal-

ization [107], rectified linear activation function, and 2×2 max pooling layers. Early

stopping was performed using development set loss as the trigger. The optimization

method was Adam [87] with a learning ratio of 0.0001. In the training step, inverse

values of the class frequencies were used as class weights to mitigate the class imbalance

problem [95]. Minibatch size was 8 in IEMOCAP and 16 in MSP-Podcast evaluations.

Data augmentation was performed by means of speed perturbation with speed factors

of 0.9, 0.95, 1.05, and 1.1 [7]. SpecAugment [108] was also applied with two time and

frequency masking. The ensemble of multiple majority-voted models with different ini-
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Table 4.3: Network architectures of emotion recognition model.

Layer-type Parameters

Encoder CNN 16 ch, [12×16] kernel, [2×2] stride

CNN 24 ch, [4×6] kernel, [1×1] stride

CNN 32 ch, [3×4] kernel, [1×1] stride

BLSTM 1 layer, 128 dim.

attention structured self-attention [102], 4 head

Decoder FC/AIAL/SWAL 1 layer, 64 dim.

FC/AIAL/SWAL 1 layer, 4 dim.

Table 4.4: Number of model parameters.

IEMOCAP MSP-Podcast

Baseline Majority 1.04M

Majority (ens.) 3.11M 7.26M

Proposed Fine-tuning LI 1.04M

LD 4.15M 160.68M

Auxiliary 1.04M

Weighting 1.09M

tial parameters was also compared because the proposed method unifies the multiple

outputs of LD models. The number of ensembled models was the average number of

listeners per utterance, i.e. 3 and 7 in IEMOCAP and MSP-Podcast, respectively.

The proposals were LD models by fine-tuning, auxiliary input, and sub-layer weight-

ing. LI model, the base model of the fine-tuning based LD model, was also compared

to investigate the difference before and after fine-tuning. These model structures were

the same as the baseline except for FC layers in the decoder, which were replaced

with AIALs or SWALs. The numbers of listener embedding vector dimensions and

sub-layers were 2, 3, 4, 8, 16 and we selected the best parameters for each dataset.
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Table 4.5: Estimation accuracies of the majority-voted emotions.

IEMOCAP MSP-Podcast

WA UA WA UA

Baseline Majority 59.1 62.5 47.8 47.0

Majority (ens.) 61.0 64.7 47.8 47.0

Proposed Fine-tuning LI 61.2 63.7 54.9 48.9

LD 62.9 65.2 56.6 48.9

Auxiliary 62.9 65.2 57.4 47.0

Weighting 62.3 64.0 58.7 46.3

The learning ratio was 0.0001 and 0.00005 in flat-start and fine-tuning, respectively.

The class weights were calculated by each listener in LD model training. The other

training conditions and data augmentation setup were those of the baseline. All the

baseline and the proposed methods were implemented by PyTorch [94]. Comparisons

of the model parameters are shown in Table 4.4. The numbers of dimensions of listener

embedding vector dimensions and sub-layers shown in the Table were 4.

Two evaluation metrics common in emotion recognition studies were employed;

Weighted Accuracy (WA) and Unweighted Accuracy (UA). WA is the classification

accuracy of all utterances and UA is the macro average of individual emotion class

accuracies. We evaluated not only the performances of majority-voted emotion esti-

mation but also those of listener-wise emotion recognition to investigate the capability

of the proposed LD models.

Results

The results of majority-voted emotion estimation are shown in Table 4.5. The no-

tation Majority (ens.) means the ensemble result of the majority-voted models. Com-
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Table 4.6: Macro average of estimation accuracies of the listener-dependent perceived

emotions.

IEMOCAP MSP-Podcast

WA UA WA UA

Baseline Majority 57.0 62.0 44.9 43.2

Majority (ens.) 58.9 64.1 44.0 43.3

Proposed Fine-tuning LI 59.7 63.6 50.0 44.3

LD 61.6 63.3 51.8 44.8

Auxiliary 61.5 64.7 52.1 45.1

Weighting 60.9 63.8 53.1 44.9

paring the two datasets, MSP-Podcast yielded lower overall accuracy than IEMOCAP.

It is considered that MSP-Podcast contains natural speech with a large number of

speakers, which makes it more difficult to recognize emotion than IEMOCAP, which

holds acted utterances from limited speakers. The LD models showed significantly

better WAs (p < .05 in paired t-test) as almost the same or better UAs than the

baselines on both datasets. For example, fine-tuning based LD models achieved 3.8 %

and 2.7 % improvements from the single majority-voted model in WA and UA for

IEMOCAP, 8.8% and 1.9% for MSP-Podcast. These results indicate that majority-

voted emotion recognition based on LD models is more effective than the conventional

majority-voted emotion modeling framework. Fig. 4.6 and 4.7 show the confusion ma-

trices of the baseline and the auxiliary input-based LD model. Comparing numbers of

the corrected samples for each emotion, Hap was improved on both IEMOCAP and

MSP-Podcast, while Sad and Ang were degraded on MSP-Podcast. One possible rea-

son for the degradation is data imbalance. These two emotions were hardly observed

by some listeners, e.g. listener 154 annotated only 2 utterances with Ang emotion as

shown in Table 4.2, which leads to overfitting in the LD model. Comparing the LD
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Figure 4.6: Confusion matrices for IEMOCAP.

models, there were no significant differences (p ≥ .05), while fine-tuning and auxiliary

input were slightly better for IEMOCAP, while sub-layer weighting yielded the best

WA and fine-tuning attained the best UA for MSP-Podcast. Taking the number of

parameters, see Table 4.4, into consideration, the auxiliary input based model is suit-

able for all conditions, while sub-layer weighting may become better for large datasets.

Note that even the LI model significantly outperformed the model ensemble baseline in

MSP-Podcast (p < .05). One possible reason is that training by listener-specific labels

allows the model to learn inter-emotion similarities. For example, a set of listener-

wise labels {neu, neu, hap} indicates that the speech may contain both neu and hap

cues. On the other hand, its majority-voted label just indicates the speech has neu

characteristics.

Macro averages of listener-wise emotion recognition performances are shown in Ta-

ble 4.6. In this evaluation, WA/UAs of all the listeners except for “rest listeners” were

averaged to compare overall performance. Table 4.6 represents that all LD models

showed better performance than the baseline. The improvements were significant in
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Figure 4.7: Confusion matrices for MSP-Podcast.

MSP-Podcast (p < .05 in paired t-test), while not in IEMOCAP. It is considered that

IEMOCAP has only 3 listeners, which is too few samples for a paired t-test. Note

that there are no significances among the three proposed LD models. The matrices of

listener-wise WA with LD models are also shown in Fig. 4.8. All the LD models were

constructed by fine-tuning. Comparing the matrices to Fig. 4.5, the evaluations of high

similarity listener pairs tend to show relatively high WAs. For example, LD models of

listeners 1, 4, 9, 10 showed higher WAs than the remaining LD models for listener 1

evaluation data. These results indicate that LD models can accurately learn listener-

dependent emotion perception characteristics. Note that there are several listeners in

which the listener-mismatched LD model showed better WAs than the listener-matched

model. One possible reason is the difference in the amount of training data in listeners.

For example, listener 1 has several times of training data compared with other listen-

ers, which yields a better emotion perception model in spite of listener-mismatched

conditions.
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Figure 4.8: WAs of listener-wise emotion recognitions with LD models.

4.4.3 Adaptation Evaluation

Setups

We resegmented MSP-Podcast evaluation subsets to create an utterance and listener

open dataset. First, the utterances contained only “rest listeners” were selected from

the original training, validation, and testing dataset as the open data candidates. Sec-

ond, the listeners who annotated more than 2 utterances with each target emotion and

30 utterances in total of the candidates were selected as the open listeners. Finally, the

utterances that had one or more open listeners in the candidates were regarded as the

open dataset, while the remaining candidates were returned to the original training,

validation, and test sets. We selected 24 listeners with 1080 utterances for the open

dataset. The average number of utterances per listener was 42.8. Note that we did not

use IEMOCAP in the adaptation evaluation because no open utterances were available.

The baseline method was the majority-voted emotion recognition model without

adaptation. It was trained by the resegmented training and validation set. The pro-
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posed was the auxiliary input-based LD model with adaptation. The LD model was

trained by the resegmented training and validation set first, then adapted to the spe-

cific listener in the open set with adaptation data. 5-fold cross-validation was used in

the LD model adaptation; 80 % of the open dataset was used for adaptation and the

rest 20 % was for the evaluation. To evaluate the performance of the listener code

estimation alone, we also ran a comparison with the auxiliary input-based LD model

in the oracle condition in which the one-hot listener code that showed the highest ge-

ometric mean of WA and UA was selected for each open listeners. We used the same

LD model in adaptation and oracle conditions. For the adaptation, the minibatch size

was the same as the amount of listener-wise utterances in the adaptation set. The

learning rate was 0.05. Earlystopping was not used and the adaptation was stopped

at 30 epochs.

Evaluation metrics were macro averages of the listener-wise WAs and UAs. Note

that we did not evaluate the performance of the majority-voted emotion recognition

because the majority-voted emotions were not open; the listeners of the utterances in

the open dataset were almost “rest listeners” who included in the training subset and

the majority-voted emotions were mostly determined by them.

Results

The macro average of listener-wise WAs and UAs are shown in Table 4.7. Relative to

the baseline, the auxiliary input-based LD model with adaptation achieved significantly

better WA (p < .05 in paired t-test) with the same level of UA (p > .05). Furthermore,

the oracle of the auxiliary model showed very high WA and UA (p < .05 compared

with the auxiliary model with adaptation). These indicate that the auxiliary model

is capable of listener-dependent emotion recognition and the proposed adaptation is
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Table 4.7: Macro average of WAs and UAs in listener-open dataset.

MSP-Podcast

WA UA

Baseline Majority 41.4 42.0

Proposed Auxiliary Adapted 48.4 44.2

Oracle 58.6 52.7

effective for unseen listeners, while there is room for improvement to estimate better

listener code from a limited adaptation set. The same trend is present in the examples

of the listener-wise WAs and UAs shown in Fig. 4.9. The LD model with adaptation

showed the same or better performances than the majority model for all listeners, and

the auxiliary model in the oracle setup greatly outperformed the adapted model for

some listeners such as listener B.

Table 4.6 and 4.7 show that the auxiliary model with oracle evaluation in the open set

attained higher accuracies than those with listener-closed training in the test set. One

possibility is that there are some listeners who gave noisy annotations, which degrades

estimation performance even in listener-closed conditions. It has been reported that

there are several noisy annotators in crowdsourced data like MSP-Podcast [109].

4.5 Summary

This chapter proposed an emotion recognition framework based on listener-dependent

emotion perception models. The conventional approach ignores the individuality of

emotional perception. The key idea of the proposal lies in constructing LD models

that account for individuality. Three LD models were introduced: fine-tuning, auxil-

iary input, and sub-layer weighting. The last two models can adapt to a wide range



4.5. Summary 77

0

20

40

60

80

100

A B C D E F

W
A

 [%
]

Listeners in open dataset

Majority
Auxiliary (Adapted)
Auxiliary (Oracle)

Figure 4.9: WA for each listeners in open dataset.

of listeners with limited model parameters. Experiments on two large emotion speech

corpora revealed that emotion perception depends on listeners and that the proposed

framework outperformed the conventional method by means of leveraging listener de-

pendencies in majority-voted emotion recognition. Furthermore, the proposed LD

models attained higher accuracies in listener-wise emotion recognition, which indicates

that the LD models were successful in learning the individuality of emotion perception.

Future work includes investigating the effectiveness of the proposed approach in other

languages and cultures, improving the adaptation framework to unseen listeners, and

combining the LD models with the speaker adaptation frameworks.





5 Conclusions

5.1 Summary of This Thesis

Speech emotion recognition is an important technology to realize natural communica-

tion between humans and machines. However, research on speech emotion recognition

is scarce, and there are few practical examples compared to other speech processing.

This thesis aimed to develop speech emotion recognition frameworks that can be ap-

plied to the real world.

In this thesis, we attempted to solve the following two fundamental problems in

speech emotion recognition. The first was that emotional expressions are very com-

plex and diverse that their recognition is difficult. The second was that emotions are

influenced not only by the speaker but also by the listener, and thus differences in the

listener’s perception of emotions need to be taken into account. We took two steps to

solve each issue. The first step was to recognize only a limited number of emotions

in a limited sound environment; customer satisfaction estimation in contact center

calls. The second step was to recognize several basic emotions in natural speech; basic

emotion classification in natural speech.

In Chapter 2, general information of emotions and the tasks of speech emotion recog-

nition were described. We also presented the conventional methods of two-step studies,

customer satisfaction estimation and basic emotion classification.

In Chapter 3, we described the first task: customer satisfaction estimation in contact
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centers. In order to capture a variety of emotional expressions to evaluate customer

satisfactions, the proposed method utilized the characteristics of customer satisfac-

tion expressions. We discovered that there was a contextual dependency in customer

satisfaction, and there was a relationship between the satisfaction of the entire call

and individual turns. The proposed hierarchical multi-task model had hierarchically

stacked RNN layers with multi-task loss to learn these characteristics. Three types of

heuristic features were also developed to capture complex cues of customer satisfac-

tions. Furthermore, we proposed a new domain adaptation of the proposed model from

call-level satisfaction labels alone, which substantially decreases annotation cost. The

evaluation experiments based on two call datasets showed that the proposed model im-

proved the estimation accuracy of two-level customer satisfactions, and the proposed

adaptation achieved high estimation accuracies.

In Chapter 4, basic emotion recognition for natural speech was presented as the sec-

ond step of this thesis. We proposed a new emotion recognition technique that mod-

eled the emotion perception criteria of each listener, developing the conventional deep

learning-based emotion recognition. Three types of the proposed listener-dependent

emotion recognition models were described, one was the simple fine-tuning-based model

and the rest two of which used auxiliary features to represent different emotion percep-

tion criteria for each listener in a single model. These proposed methods were based on

domain adaptation techniques that have been successfully applied in speech process-

ing. Evaluation experiments using two datasets revealed that the emotion perception

criteria tend to be different for different listeners in natural speech. Furthermore,

the proposed listener-dependent models improved estimation accuracies of both the

listener-dependent and the majority-voted emotions.

In conclusion, this thesis demonstrated several speech emotion recognition meth-
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ods that can be applied to the real world. Two emotion recognition frameworks for

customer satisfaction estimation and basic emotion classification were proposed. The

most important contribution of this thesis was that we revealed that there are certain

trends in the expression and perception of emotional information, and that emotion

recognition performance can be improved to utilize these trends.

5.2 Future Work

Although the proposed method has contributed to the improvement of recognition

accuracy in existing speech emotion recognition tasks, there are several challenges that

should be addressed in the future.

5.2.1 Utilization of Unlabeled Data

A limited amount of labeled data is usually used to train emotion recognition model

because annotation of emotion labels requires a lot of cost. In order to construct a

robust recognition model under such conditions, it is desirable to use unlabeled speech

that is easy to collect. For example, self training and unsupervised pre-training should

be incorporated.

5.2.2 Combination of Multimodal Features

Emotions are expressed not only in acoustic aspects but also in various aspects such

as linguistic information. However, we do not use linguistic features, or we use only a

limited vocabulary in this thesis. It is important to use multi-modal features including

linguistic ones to improve the base accuracy of emotion recognition.
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5.2.3 Simultaneous Modeling of Speaker and Listener Depen-

dencies

In the second step of this paper, we proposed a method to deal with the dependency

of emotion perception of listeners. However, as mentioned in Chapter 4, emotion is also

dependent on the expression of speakers. A framework that handles the dependency

of both the speaker and the listener in the single model is required.

5.2.4 Language Dependencies

Japanese calls and English speech are used in the first and the second step of the

thesis. It is desirable to evaluate the proposed method in more languages because

some studies indicate that there is a possibility that the emotion expressions depend

on language.
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