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Abstract

The human brain has a remarkable capacity to selectively direct auditory

attention to a specific sound amidst various interferences. This is known as

selective auditory attention. In social communication, this ability plays an

important role in dealing with various voices and extracting useful informa-

tion from them. However, machines have yet to achieve such an auditory

attention capability as humans.

Many efforts have been spent on its engineering solution, which yields

the research on target speaker extraction (TSE). With the development of

speech processing technology, TSE has become an attractive research topic

in recent years. TSE aims to extract a target speaker’s voice from mixed

signals, which is desired for numerous applications like speech recognition

systems and hearing aids. TSE can be implemented by blind source sepa-

ration (BSS) methods for a multi-channel system using a microphone array,

where the BSS methods aim to separate all sources in the mixed signal with-

out using prior information. However, in many realistic conditions, recov-

ering all mixed sources is often unnecessary, as only one or a few specific

sources are needed. Besides, to achieve the target selection, prior knowledge

or additional information of the target speaker is necessary. One of the most

effective pieces of information is a spatial cue of the target speaker in the

spatial sound field. One effective implementation of utilizing spatial cues

is the geometric source separation (GSS), which uses geometric constraints

(GCs) in BSS frameworks to separate the target speaker.



Conventional GSS methods are usually designed for determined condi-

tions, where the number of sound sources equals the number of microphones.

However, in many realistic applications, hardware limitations often lead to

underdetermined conditions, where the number of sound sources is larger

than the number of available microphones. Although the GSS method can

use GCs based on the spatial information of the target signal to achieve

target selection, its essence relies on the BSS framework that achieves sep-

aration by maximizing the statistical independence among signals. At the

same time, the traditional source models used in this process are mostly de-

signed for dealing with a single source in clean determined conditions. In

underdetermined conditions, a powerful source model is necessary for mod-

eling the mixture of multi-speakers. Moreover, when diffuse noise is present,

the source model needs to further represent the noisy signal to handle noisy

underdetermined conditions.

This dissertation aims to propose a direction-aware TSE method in noisy

underdetermined conditions. The main topic of the research is developing

a source model for a dual-channel TSE to deal with such conditions. To

achieve the research motivation, this study was conducted to solve the noisy

underdetermined problem step by step. The first step is to achieve the dual-

channel TSE in underdetermined conditions without background noise. On

this basis, the second step further investigates the impact of diffusion noise

on the proposed TSE method in underdetermined conditions and proposes

solutions for noisy underdetermined environments.

In step 1, this study focuses on the TSE in underdetermined conditions.

To achieve the research goal, a dual-channel framework with the combined
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capabilities of target selection based on GCs, a more powerful deep source

model, and nonlinear postprocessing is proposed. A linear GC on the target

direction of arrival (DOA) is applied to select the target, and two conditional

variational autoencoders (CVAEs) are used to model a single speaker’s speech

and interference mixture speech. For postprocessing, a time–frequency (T–

F) mask estimated from the separated interference mixture speech is used

to extract the target speaker’s speech. Additionally, to mitigate the effect

of DOA estimation errors, an improved method based on enhancing the ob-

jective function is proposed to allow the modification of the target DOA

information. The experimental results demonstrate the effectiveness of the

proposed method. All the processes are described in Chapter 3.

In step 2, considering the presence of noise in real-world environments,

this study extends the proposed TSE method to address noisy underdeter-

mined conditions. To improve the limitations of the source model, a new

source model incorporating global style tokens (GST) within a CVAE is in-

troduced to handle noisy multi-speaker mixed speech in Chapter 4. The GST

is jointly trained with the CVAE as an embedding layer to learn latent repre-

sentations, which serve as the conditional variable for the CVAE. While this

new model demonstrates improved performance in noisy underdetermined

conditions, residual noise remains in the extracted target signal in Chapter

5. To address this, Chapter 5 introduces a conditional neural postfilter with

GST to estimate a complex T-F mask for denoising. Furthermore, a joint

network is developed, where the conditional neural postfilter is trained along-

side the CVAE, sharing the GST module. Experimental results demonstrate

that the proposed source models and neural postfilter effectively improve
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performance in noisy underdetermined conditions.
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Chapter 1

Introduction

1.1 Research background

In human daily life, speech is the most effective form of communication,

serving as a key medium that carries rich information and enables us to per-

ceive the world. However, in everyday speech communication, various factors

such as interfering speakers and background noise often hinder the clarity of

the desired sound. Enhancing a target speaker from a mixture of signals

is critical for numerous applications, including meeting recognition systems

and smart home devices. For example, during a conference, many individu-

als may speak simultaneously, causing the desired speaker’s voice to overlap

with other sounds. Although the human brain has the remarkable ability to

focus on a specific sound―such as in a cocktail party with multiple speakers

―by filtering out other interferences through selective auditory attention,

machines have yet to reach the same level of capability in isolating and en-

hancing the target speaker in such complex auditory environments [1] [2].
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Many efforts have been spent on the engineering solution of selective

auditory attention, which yields research on target speaker extraction (TSE).

TSE aims to extract a particular speaker from a mixture of audio signals.

It has become a desired front-end processing in the research of speech signal

processing like automatic speech recognition (ASR) and has many practical

applications such as speech enhancement, speech recognition and hearing

aids [3].

An important technique related to TSE is blind source separation (BSS)

methods [4–9], which forms the theoretical foundation of the TSE problem.

BSS aims to recover all original sources from a mixed signal, with TSE being

a specialized task within this domain. BSS approaches the separation process

as the inverse of the source mixing process, seeking to estimate a demixing

matrix that can separate all sources. Over the past several decades, numer-

ous BSS methods have been developed. The first major class of BSS methods

is independent component analysis (ICA), which is based on linear mixing

and demixing processes and the assumption of independence in the source

model [10]. ICA has been extensively studied in statistics and information

theory. Frequency-domain ICA (FDICA) offers faster convergence compared

to time-domain deconvolution methods [11–14], but it faces a notable chal-

lenge known as the permutation problem, which refers to inconsistencies in

output channels across frequency bins. Independent vector analysis (IVA), a

multivariate extension of ICA, addresses convoluted BSS problems by using

a multivariate source prior to short-time Fourier transform (STFT) compo-

nents, thus mitigating the permutation issue [15], [16].

In practical applications, recovering all mixed sources is often unneces-
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sary. Unlike traditional BSS methods, TSE focuses solely on extracting the

target speaker from the observed mixture. This is especially critical in com-

plex multi-speaker environments where the clarity of a specific speaker’s voice

is essential, despite interference from other speakers, background noise, or

various sound sources. The TSE process typically involves multiple stages,

starting with the identification of the target speaker, often using prior knowl-

edge or auxiliary information, followed by feature extraction and separation.

Among the various types of auxiliary information, extracting speaker infor-

mation from audio samples has proven to be effective. Frequency-domain ap-

proaches like SpeakerBeam [17] and VoiceFilter [18] isolate the target speaker

using an adaptation utterance or reference signal. Meanwhile, time-domain

methods such as SpEx+ [19] have gained attention by incorporating a speaker

encoder. In addition, visual features such as lip movements [20] [21] [22] [23]

and facial frames [24] [25] are also widely used to enhance speaker isolation.

In a spatial sound field with a multi-channel system, spatial information,

such as the direction of arrival (DOA) of sound sources, serves as a distinctive

feature that helps differentiate between sources. Several studies have demon-

strated the potential of incorporating spatial information into traditional BSS

frameworks. Geometric source separation (GSS) [26] [27] [28] [29] [30] is one

such approach that utilizes geometric constraints (GCs) within BSS frame-

works to separate a target source from a mixture. Classical methods like ge-

ometrically constrained independent vector analysis (GCIVA) [31]. GCIVA

employs a generalized sidelobe canceller (GSC) [32] [33] structure, utilizing a

beamformer to enhance the target signal and a null beamformer to suppress

the target and estimate interferences. GSS methods do not require a large
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amount of training data and do not need prior spatial audio information

during training. It only requires the spatial information to generate GCs to

achieve the target speaker selection in the inference stage.

1.2 Research issues

Although the GSS method is an effective way to implement TSE by using

spatial information, most existing GSS methods are developed for clean and

determined conditions, where the number of microphones equals the number

of sources and the effects of diffuse noise are not taken into account. Practical

scenarios often involve noisy underdetermined conditions due to hardware

limitations and environmental noise, posing challenges for traditional GSS

methods. A major challenge under such conditions is the limitation of a

source model. Traditional source models like the Laplace distribution in

the IVA framework, are usually used for modeling a clean single source.

In cases of underdetermined conditions, a more powerful source model is

required because the source model needs to deal not only with the target

speech but also with the mixture of interference speakers. Furthermore, when

background noise is present, it becomes crucial to model the more complex

signal, which includes both speech and noise components.

Many efforts have been made in developing the source model of a speech

signal. In independent low-rank matrix analysis (ILRMA), a flexible source

model of nonnegative matrix factorization (NMF) decomposition was applied

in the IVA framework, which yielded a higher modeling power of complex

spectral structures than the former IVA with a Laplace distribution-based

4



source model [34]. Furthermore, a Bayesian framework-based method has

been proposed to introduce a background source (BG) model derived by

independent vector extraction (IVE) [35] that allows for underdetermined

cases to extract the source of interest (SOI) [36]. In recent years, deep neu-

ral networks (DNNs) have been leveraged to model spectral features owing

to their robust capabilities [37] [38]. The multichannel variational autoen-

coder (MVAE) [39] method utilizes the conditional variational autoencoder

(CVAE) [40] as the generative source model in an IVA framework, which was

proposed for determined conditions. The MVAE trains a CVAE using power

spectrograms of clean speech samples and the corresponding speaker index

(ID) as an auxiliary label input so that the trained decoder output distribu-

tion can be used as a universal generative model of source signals, which has

shown its effectiveness in determined conditions owing to its representation

power. However, the CVAE used in MVAE trained by clean speech can only

deal with determined conditions. Furthermore, without additional informa-

tion on the target speaker, MVAE can not achieve the target selection.

Another key issue in noisy underdetermined conditions is diffuse noise.

Within the GSS framework, target selection is based on the generated GC.

When the number of microphones is limited, diffuse noise originating from

the target speaker’s direction, or from within a certain vicinity, inevitably re-

mains when using the generated GC. This is a common problem in research on

directional speech extraction, separation, and enhancement [42] [43]. Similar

to underdetermined conditions, the challenge of diffuse noise in traditional

GSS methods stems from the limitations of the source model, as these meth-

ods typically assume a clean, single-source model. In noisy underdetermined
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conditions, environmental noise results in diffuse noise mixing with the tar-

get and interference signals, posing significant challenges for traditional GSS

methods.

For the issue of diffuse noise, another limitation lies in the postfiltering

process. Typically, diffuse noise can be addressed using a postfilter; how-

ever, traditional postfilters, such as real-value time-frequency (T-F) masks,

are not very effective against diffuse noise. Research has demonstrated that a

complex mask generated by a neural postfilter significantly outperforms tra-

ditional T-F masks [44]. More recently, a DNN-based speech enhancement

method employing a convolutional neural network–bidirectional long short-

term memory (CNNBLSTM) network has been shown to effectively generate

a complex T-F mask [45]. In [45], a trained CNNBLSTM network is used

to generate a complex ideal ratio mask (cIRM) [46] for speech enhancement,

which enhances both magnitude and phase responses of noisy speech simulta-

neously, offering better performance over traditional ideal ratio mask (IRM)

approaches.

1.3 Research objectives

This study aims to propose a dual-channel TSE method for noisy under-

determined conditions. Deep source models based on CVAEs have demon-

strated strong capabilities in modeling speech signals and show significant

potential for overcoming the limitations of GSS methods in noisy underde-

termined conditions. Therefore, the primary focus of this study is to develop

a deep source model capable of handling complex noisy mixed speech under

6



these conditions. Leveraging deep source modeling and GCs within the GSS

framework, this study seeks to achieve directional TSE in noisy underdeter-

mined conditions.

This study follows a two-step approach to achieve the research goal. In the

first step, this study focuses on underdetermined conditions. A dual-channel

TSE method is proposed, integrating the GCs-based TSE algorithm, deep

source model, and T-F mask-based postfilter within a GSS framework. The

limitation of the traditional source model in underdetermined conditions is

addressed by developing a new deep source model based on CVAEs tailored

to these conditions. Following this, an improved algorithm is proposed for ad-

dressing the impact of DOA estimation errors. In the second step, the study

is extended to noisy underdetermined conditions, introducing refined deep

source models and a new neural postfilter to further enhance performance in

these challenging environments.

There are several novelties in this study. First, this study applies DNN

to learn the source model of complex signals in noisy underdetermined con-

ditions instead of using an assumed statistical source model. Second, the

combination of the deep source model and GSS framework achieves the di-

rectional TSE in challenging environments. These novelties provide poten-

tial applications for dual-channel systems in speech processing in real-world

sound fields. This dissertation makes the following key contributions:

1. Advanced Source Modeling with CVAE:

･A novel IntCVAE-based source model is proposed, which is incorpo-

rated with the GSS framework to enhance the capabilities of directional TSE
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methods, enabling TSE in underdetermined conditions.

･The GIntCVAE model incorporates global style tokens (GST) to pro-

vide continuous conditioning representations, improving robustness in noisy

environments.

2. DOA Modification for Robust Spatial Filtering:

･A novel DOA modification strategy is proposed to address inaccuracies

in DOA estimation, improving the system’s robustness to DOA estimation

errors under real-world conditions with imperfect spatial information.

3. Integrated Postfiltering:

･The GTarCVAE model and a CNNBLSTM-based neural postfilter are

jointly trained to suppress residual noise. This joint network leverages ad-

vanced source modeling and postfiltering techniques, resulting in higher-

quality extracted speech.

4. Applications and Broader Impact:

･The proposed methods have potential applications in the front-end pro-

cessing of speech recognition systems, assistive hearing devices, and telecom-

munication tools, enhancing their functionality in noisy, multi-speaker envi-

ronments.

･The integration of spatial cues with neural source models may provide

insights applicable to other fields, such as visual-audio signal processing and

environmental monitoring.
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1.4 Structure of this dissertation

In this dissertation, the structure of the content is shown in Fig. 1.1. At

great length, Chapter 1 describes the background and research issues TSE

in noisy underdetermined conditions. Also, the objectives, originality, and

significance of this research are presented here.

In Chapter 2, there is a literature review of the target speaker extraction.

First, the problem formulation is addressed at the beginning of this chapter.

Then, the review of traditional methods is elaborated. They both included

descriptions of GSS framework-based method and its limitations. Finally,

the recently proposed DNN-based method, CVAE, is described in detail.

After that, in Chapter 3, the research of TSE in underdetermined condi-

tions is described in detail here. This chapter presents a GSS-based frame-

work, comprising GCs based on the target DOA, a deep source model, and

a T-F mask-based postfilter. Within this framework, a directional TSE al-

gorithm is proposed, and a novel deep source model for mixed speech signals

is proposed and described in detail here. To evaluate the proposed source

model, experiments of modeling power are carried out. Then, the issues

made by DOA estimation errors are elaborated. To address this problem,

an improved method with a DOA modification process is proposed. Finally,

several experimental evaluations are made.

To extend this method to noisy underdetermined conditions, Chapter 4

introduces a refined deep source model by incorporating a deep embedding

layer. The previous deep source model’s conditional variable is found to

have limitations in representing complex noisy mixed signals. The newly
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introduced embedding layer learns latent representations of these signals,

improving the model’s ability to handle such complex signals. After that,

several experimental evaluations are performed.

To address the residual diffuse noise in the extracted signal, Chapter 5

introduces a neural postfilter for enhancing the signal quality. The postfilter

using the T-F mask designed in a manner based on signal processing has

limited performance in handling diffuse noise. In this chapter, a DNN-based

neural postfilter is proposed to estimate a complex T-F mask for denoising.

Furthermore, to better model the initially extracted target signal with noise,

a conditional neural postfilter is jointly trained with a new source model

tailored for noisy target speech. Experimental evaluations are conducted to

assess the effectiveness of these approaches.

Finally, Chapter 6 is a summary of this dissertation with respect to the

research question, the proposed method, and the results of this research. In

addition, the future works of this study are discussed.
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Figure 1.1: Scheme of this dissertation.
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Chapter 2

Target Speaker Extraction

2.1 Overview

Generally speaking, TSE is a specific mission of sound source separation.

Various separation methods have been proposed that form the theoretical

basis for the implementation of TSE. This chapter gives a brief review of re-

lated BSS methods and describes the fundamental algorithm of these meth-

ods, which will be helpful for later discussions. Firstly, the formulation of

the dual-channel TSE problem in underdetermined conditions is described

in Sect. 2.2. By assuming the interference mixture except for the target

speaker as one source, such a formulation can be interpreted as a special

form of speech separation system based on separation matrix in underdeter-

mined conditions. After that, this chapter provides a brief review of related

separation methods based on signal independence. After Sect. 2.2, a spatial

information-based method developed on the aforementioned basic separation

methods is described in Sect. 2.3, which provides an effective means for im-
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plementing TSE. Then, the next section of this chapter reviews the recently

proposed new method based on deep source modeling. The final section

summarizes this chapter.

2.2 Problem formulation of a dual-channel TSE

problem in underdetermined conditions

Let us consider a TSE problem under the underdetermined condition

where a dual-channel microphone array is used. Let s(f, n) and x(f, n) be

the STFT coefficients of the source signals and a set of microphone signals,

where f and n are the frequency and time indices, respectively. These signals

are expressed as

s(f, n) = [s1(f, n), s2(f, n)]
T , (2.1)

x(f, n) = [x1(f, n), x2(f, n)]
T , (2.2)

where s1(f, n) is the target with a known DOA and s2(f, n) is the interference

mixture excluding the target. x1(f, n) and x2(f, n) are the observed signals of

two input microphones. A separation system based on the demixing matrix

W(f) is expressed as
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s(f, n) = WH(f)x(f, n), (2.3)

W(f) = [w1(f),w2(f)], (2.4)

where W(f) is the demixing matrix and s(f, n) is an estimate of the tar-

get and interference mixture. w1(f) is used to enhance the target, whereas

w2(f) is used to estimate the interference by suppressing the target. Due to

the challenge of suppressing interference mixtures with a linear filter in un-

derdetermined conditions, estimating the target accurately in such scenarios

is not easy. On the other hand, it is still possible to suppress the target using

the linear filter to estimate the interference mixture.

Let us assume that source signals follow the local Gaussian model (LGM),

i.e., sj(f, n) independently follows a zero-mean complex Gaussian distribu-

tion with the variance vj(f, n) = E[|sj(f, n)|2], where j = 1, 2 that denotes

the index of each source. Based on the further assumption that s1(f, n) and

s2(f, n) are independent of each other, s(f, n) then follows

s(f, n) ∼ NC(s(f, n)|0,V(f, n)), (2.5)

where V(f, n) = diag[v1(f, n), v2(f, n)]. On the basis of Eqs. (2.3) and (2.5),

x(f, n) follows
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x(f, n) ∼ NC(x(f, n)|0, (WH(f))−1V(f, n)W(f)−1). (2.6)

The log-likelihood of the demixing matrices W = {W(f)}f for the ob-

served mixture signals X = {x(f, n)}f,n is given by

log p(X|W ,V) c
= 2N

∑
f

log|detW(f)|

−
∑
f,n,j

(log vj(f, n) +
|wH

j (f)x(f, n)|2

vj(f, n)
), (2.7)

where c
= denotes equality up to constant terms and source model parameters

are presented as V = {vj(f, n)}j,f,n. It means the equation holds except for

an irrelevant constant, which does not affect the outcome of the optimization.

2.3 Related separation methods based on sig-

nal independence

The goal of BSS is to estimate the demixing matrix from the observed

signals without any prior knowledge about the sources or the mixing pro-

cess. Early foundational methods, such as ICA, were developed under the

assumption of determined conditions, where the number of sources equals the

number of microphones. These methods form the basis of BSS, leveraging

the independence of source signals as a key criterion for separation. Deter-
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mined conditions represent the fundamental scenario for BSS, providing a

theoretical foundation that later methods have expanded upon to address

more complex and realistic environments.

2.3.1 Basic theory of ICA and FDICA

ICA is a statistical method for blind source separation, designed to de-

compose observed mixed signals into statistically independent source signals,

effectively serving as an inverse process of source mixing. It was originally

developed for determined instantaneous mixtures in the time domain, under

the assumption of no delays or reverberation. The core assumption of ICA

is that the source signals are non-Gaussian and mutually independent. This

assumption enables an effective solution to BSS problems in determined con-

ditions, as the mixture of sources tends to follow a Gaussian distribution,

even when the original sources are non-Gaussian, consistent with the central

limit theorem.

However, ICA is limited to instantaneous mixtures and struggles to han-

dle convolutive mixtures, where signals experience delays and reverberation

during propagation in many realistic acoustic fields. To address these limita-

tions, frequency-domain independent component analysis (FDICA) [11–14]

was proposed. FDICA extends ICA by transforming the convolutive mixing

problem in the time domain into a simpler instantaneous mixing problem in

the time-frequency domain using the STFT. By applying ICA independently

at each frequency bin, FDICA enables the separation of convolutive mixtures

x(f, n) in the time-frequency domain, where demixing matrix W(f) is esti-
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mated for the separation. Under such assumption, a simplistic probabilistic

model for the sources can be formulated as

p(x(f, n)|W(f)) = |WH(f)|2p(s(f, n)) (2.8)

= |WH(f)|2
∏
j

p(sj(f, n)), (2.9)

To estimate the demixing matrix with given source signals, the negative log-

likelihood of X givenW is applied as the objective function to be minimized

is expressed as

JFDICA(X|W) = − log p(X|W) (2.10)
c
= −N

∑
f

log|detW(f)| −
∑
f,n,j

(log p(wH
j (f)x(f, n)), (2.11)

In many ICA applications under determined conditions, the source model

of p(sj(f, n)) = p(wH
j (f)x(f, n)) is empirically assumed to the conventional

ones like Laplace distribution to describe a single source signal.

2.3.2 Basic theory of IVA

Although ICA and FDICA have been widely used for BSS, they face

some limitations, particularly the permutation ambiguity. In ICA, it cannot

inherently determine which component corresponds to which original source.

This ambiguity arises because the separation is based solely on statistical

independence, without any additional information or constraints linking the
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output to the original sources. For FDICA, the ambiguity occurs because the

separation at each frequency bin is independent so that the order of separated

components (sources) can vary across different frequency bins.

IVA is a multivariate extension of FDICA and is used to avoid the permu-

tation problem in BSS by making appropriate assumptions of the distribution

of signals p(sj(f, n)). Unlike FDICA, which independently models each of

the frequency components resulting in the permutation ambiguity problem,

IVA models all the sources and separated signals as frequency vector vari-

ables. The source model in IVA treats all frequency bins as a single variable

sj(n) = [sj(1;n), ..., sj(F ;n)]T, which is assumed to follow a spherically sym-

metric multivariate distribution. This assumption allows for higher-order

correlations between frequency components to be captured. The spherically

symmetric property implies that the distribution depends solely on the norm

of the multivariate vector, i.e., p(sj(n)) = f(||sj(n)||). The objective function

of IVA to be minimized that follows the negative log-likelihood is expressed

as

JIVA(W) =
∑
j

E[G(sj(n))]− 2
∑
f

log|detW(f)|, (2.12)

where G(sj(n)) = − log p(sj(n)) is called the contrast function. p(sj(n)) is

the probability density function of the j-th separated signal sj(n) known as

the source model. In FDICA, the non-Gaussian source distribution such as

the Laplace distribution of p(sj(n)) is assumed for each frequency compo-

nent, whereas IVA assumes that the source model follows a non-Gaussian
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spherically symmetric source distribution p(sj(n)) for the frequency vector

variables like the spherically symmetric multivariate Laplace distribution.

One typical choice of IVA source model is using a spherically symmetric

multivariate Laplace distribution as a super-Gaussian distribution for mod-

eling sources [15] [16] [47]. Under such an assumption of distribution, the

contrast function is expressed as

G(sj(n)) = GR(rj(n)), (2.13)

rj(n) = ||sj(n)||2 =
√∑

f

|sj(f, n)|2, (2.14)

where, GR(rj(n)) is a continuous and differentiable function of the real vari-

able rj(n), ensuring that G′
R(rj(n))/rj(n) remains continuous everywhere

and monotonically decreases for rj(n) ≥ 0. Most of the IVA contrast func-

tions employed in studies like [15] [16] satisfy the conditions of GR(r), in-

cluding

GR(rj(n)) = Krj(n), (2.15)

where K is a positive constant.
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2.4 Geometric source separation method for

target selection

In the traditional source separation method, the demixing matrix-based

source separation processing aims to just separate the observed mixture sig-

nals into individual source signals. However, real-world applications often

require additional information to select target speech post-separation, ad-

dressing output-channel permutation issues. As this dissertation mentioned

in Chpater 1, there are several frameworks for utilizing spatial information

to implement TSE, in which BSS has shown its own merit in incorporating

signal independence and spatial information. This dissertation focuses on

the BSS framework-based method.

2.4.1 Formulation of GCs-based TSE

In underdetermined conditions, the GSS framework applies GCs based on

spatial information to implement TSE. Now, let us consider that GCs [26]

restrict the far-field response of the jth demixing filter in the target DOA α,

which is described as

Jgc(W) =
∑
j

λj

∑
f

|wH
j (f)d(f, α)− bj|2, (2.16)

d(f, α) = exp[−j(p/c)fcos(α)], (2.17)
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where d(f, α) is the steering vector toward α, p = [p1, p2] are the positions

of two microphones, and c is the wave propagation speed. λj is a weighting

parameter and bj ≥ 0 is the parameter for controlling the beam pattern. This

concept has been used in the linearly constrained minimum variance (LCMV)

beamformer [48]. If bj = 1, the corresponding wj(f) is estimated to form

a delay-and-sum (DS) beamformer [49] toward α to preserve the target. In

contrast, a small bj value creates a null beamformer towards α, acting as

a blocking matrix (BM) [50] that suppresses the target while estimating a

mixture of all interferences. Following the formulation of Eq. (2.7) in Sect.

2.2, the overall objective function to be minimized is

J(W ,V) = − log p(X|W ,V) + Jgc(W). (2.18)

2.4.2 Geometric Constraint-Based IVA

Incorporating spatial information into BSS demixing filters has been ap-

proached in two main ways. One involves using spatial data as prior knowl-

edge to optimize the demixing matrix, such as the Bayesian framework-based

IVA method utilizing a spatially informed prior [36], which extends the orig-

inal algorithm of IVA to the maximum a posteriori (MAP) method. The

other is GSS which integrates GCs into traditional BSS methods. A notable

example is GSS like geometrically constrained independent vector analysis

(GCIVA), which merges a linear GC with the IVA framework.

The fundamental framework in GCIVA is IVA, which has been described
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in Sect. 2.3.2. By applying the linear GC in IVA, the objective function of

the GCIVA method is

JGCIVA(W) = JIVA(W) + Jgc(W), (2.19)

where the GC is given by Eq. (2.16) to restrict the far-field response of the

jth estimated demixing filter by using the target DOA.

In the estimation processing of the demixing matrix in GCIVA, the aux-

iliary function approach [51] has been utilized, as demonstrated in the study

[31]. This approach has led to the development of auxiliary function-based

independent vector analysis (AuxIVA) [52], a fast and stable IVA algorithm

developed. Rather than directly optimizing the original objective function in

Eq. (2.12), which is challenging to solve analytically, the auxiliary function

JAuxIVA(W ,Q) is minimized in terms of W and the auxiliary variable Q,

which is expressed as

JAuxIVA(W ,Q) =
∑
j

∑
f

{1
2
wH

j (f)Qj(f)wj(f)− log|detW(f)|}, (2.20)

where Q = {Qj(f)}j,f , and Qj(f) is the weighted covariances expressed as

Qj(f) = E[
G′

R(rj(n))

rj(n)
x(f)xH(f)], (2.21)

Therefore, the optimized objective function of GCIVA by using AuxIVA
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is

J+
GCIVA(W ,Q) = JAuxIVA(W ,Q) + Jgc(W), (2.22)

The update rule for demixing matrix W(f) is derived based on the idea

adopted in vectorwise coordinate descent (VCD) [53], which is noteworthy

for its fast convergence, low computational cost, and nonrequirement of the

step-size parameter. This allows the demixing matrix to be refined iteratively

through the objective function Eq. (2.22). The derived update rules are

summarized as

uj = D−1
j W(f)−1ej, (2.23)

ûj = λjbjD
−1
j dj, (2.24)

hj = uH
j Djuj, (2.25)

ĥj = uH
j Djuj, (2.26)

wj(f) =


1√
hj
uj + ûj (if ĥj = 0),

ĥj

2hj
[−1 +

√
1 +

4hj

|ĥj |2
]uj + ûj (o.w.).

(2.27)

where Dj = Qj(f)+λjdjd
H
j and ej is the jth column of the identity matrix.

The algorithm of GCIVA in study [31] is summarized as follows
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Algorithm 1 GCIVA Algorithm [31]
Require: Observed mixture signal x(f, n), iteration number L

1: Initialize W with identity matrix

2: for l = 1 to L do

3: for j = 1 of J do

4: sj(f, n) = wH
j (f)x(f, n)

5: (updating auxiliary variables)

6: initialize Qj(f) using Eq. (2.21)

7: (updating demixing matrices)

8: update wj(f) using Eqs. (2.23) to (2.27)

9: end for

10: end for

2.5 Limitations of conventional methods in

implementing TSE in underdetmined con-

ditions

Traditional separation methods based on signal independence, such as

ICA, FDICA, and IVA, face several limitations in underdetermined condi-

tions, as they primarily focus on separating observed mixture signals into in-

dividual sources. More recently, GC-based methods like GCIVA have demon-

strated potential in achieving TSE. However, GCIVA also encounters signif-

icant challenges when applied to underdetermined conditions. One major

issue is the use of a spherically symmetric multivariate Laplace distribution
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as the source model, which is not well-suited for underdetermined scenarios

where the number of sources exceeds the number of microphones. The source

model in GCIVA assumes uniform variance across frequency bins and models

all frequency bins as multivariate variables, which limits its adaptability in

complex environments with diffuse noise and multi-speaker mixture. These

assumptions restrict the effectiveness of GCIVA in accurately modeling and

enhancing target speech in underdetermined conditions, where more robust

and flexible source models are required.

2.6 Deep neural network method based on

new source model

2.6.1 VAE and CVAE source method

Methods like ICA, IVA, and GCIVA, despite integrating spatial informa-

tion, face limitations in underdetermined conditions since traditional source

models such as the Laplacian distribution in GCIVA and the SOI and BG

models in IVE are not powerful enough in modeling complex spectrogram

structures, such as a mixture of multi speakers. To overcome these lim-

itations, deep generative models such as variational autoencoders (VAEs)

and generative adversarial networks (GANs), as highlighted in recent stud-

ies [54–56], offer advanced solutions. These models excel in learning complex

data distributions, which traditional source models struggle to represent.

Innovations in this area, as demonstrated by Bando et al. [57] and oth-

ers [58–60], include the application of VAEs for enhanced noise modeling
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Figure 2.1: Illustration of TarCVAE.

and speech separation, merging them with techniques like NMF and class

supervision to boost performance.

The use of conditional VAEs, where the decoder network is conditioned

on additional information, has also been explored and shown to improve sep-

aration performance in certain scenarios. The research on MVAE [39] first

introduced the conditional VAE (CVAE) [40] model in multi-channel speech

separation. Figure 2.1 shows illustrations of CVAE. In this dissertation, the

CVAE in MVAE is called the target CVAE (TarCVAE). Let S = {s(f, n)}f,n

be the complex spectrogram of an input sound source and c be the condi-

tional variable of that source. In TarCVAE, S represents the clean speech of

one single speaker, and c represents this speaker’s identity. The encoder net-

work generates a set of parameters for the conditional distribution qϕ(z|S, c)

of a latent space variable z given the input data S, whereas the decoder net-

work generates a set of parameters for the conditional distribution pθ(S|z, c).

The network parameters ϕ and θ are trained jointly using labeled samples

{Sm, cm}Mm=1, where cm is a one-hot vector that denotes the corresponding

class label indicating to which class the spectrogram Sm belongs.
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The following objective function is used to train the encoder and decoder

networks:

J (ϕ, θ) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]

−KL[qϕ(z|S, c)||p(z)]], (2.28)

where E(S,c)∼pD(S,c)[·] represents the sample mean over the labeled data set

and KL[·||·] is the Kullback–Leibler divergence. Here, pD(S, c) is approxi-

mated as the empirical distribution of sample S, c. The output distribution

of the encoder qϕ(z|S, c) and the prior distribution of z are given by Gaussian

distributions:

qϕ(z|S, c) =
∏
k

N (z(k)|µϕ(k;S, c), σ
2
ϕ(k;S, c)), (2.29)

p(z) = N (z|0, I), (2.30)

where z(k), µϕ(k;S, c), and σ2
ϕ(k;S, c) denote the kth element of z, the

mean vector µϕ(S, c), and the variance vector σ2
ϕ(S, c), respectively. The

decoder’s output distribution pθ(S|z, c, g) is designed to be a complex Gaus-

sian distribution:
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pθ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, v(f, n)), (2.31)

v(f, n) = g · σ2
θ(f, n; z, c), (2.32)

where σ2
θ(f, n; z, c) represents the (f, n)th element of the decoder output

σ2
θ(z, c) and g is a global-scale parameter of the generated spectrogram. In

the separation process of MVAE, only the decoder is used as the source model,

and the latent variable z and the conditioning variable c are updated using

the back propagation based on the IVA objective function in the demixing

matrix estimation.

2.6.2 Limitations of MVAE method based on CVAE

source model in underdetmined conditions

An MVAE trains a TarCVAE using power spectrograms of clean speech

samples along with the corresponding speaker ID as auxiliary label inputs,

enabling the trained decoder output distribution to serve as a universal gen-

erative model for source signals. While MVAE has demonstrated impressive

performance in determined cases, its effectiveness remains limited in under-

determined scenarios. Moreover, as a BSS-based approach, MVAE lacks prior

information guidance, making it incapable of effectively selecting the target

speaker.
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2.7 Evaluation metric

An important aspect of developing speech separation algorithms is evalu-

ating the quality of separated signals by comparing them to reference signals.

Metrics such as SIR signal-to-interference ratio (SIR), signal-to-distortion

ratio (SDR), and signal-to-artifacts ratio (SAR), are widely used evaluation

metrics, as they offer a comprehensive assessment of separation quality [41].

In this dissertation, several metrics are selected to make evaluations. SIR

measures the suppression of interference from other sources, reflecting the

algorithm’s effectiveness in isolating the target signal from other competing

signals. SDR evaluates the overall quality of the separated signal by consid-

ering all components of distortion in the estimated signal. SAR shows the

amount of the true source in relation to unwanted artifacts in the estimation.

In speech separation, a given estimate ŝ(t) of a source si(t) is decomposed as

a sum

ŝ(t) = starget(t) + einterf (t) + enoise(t) + eartif (t), (2.33)

where, starget(t) represents a permissible deformation of the target source

si(t), einterf (t) accounts for permissible deformations of interferences, enoise(t)

represents a permissible deformation of perturbing noise, and eartif (t) de-

notes artifacts introduced by the separation process, such as musical noise or

artificial spectral structures. The metrics are defined as
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SDR = 10 log10

||starget(t)||2

||einterf (t) + enoise(t) + eartif (t)||2
, (2.34)

SIR = 10 log10

||starget(t)||2

||einterf (t)||2
, (2.35)

SAR = 10 log10

||einterf (t) + enoise(t) + eartif (t)||2

||eartif (t)||2
, (2.36)

In noisy conditions, the signal-to-noise ratio (SNR) serves as a metric to

evaluate the effectiveness of noise suppression of an estimation source. It is

defined as

SNR = 10 log10

||ŝ(t)||2

||s2i (t)||2
, (2.37)

2.8 Summary of Chapter 2

This chapter provided an overview of Target speaker extraction (TSE)

and reviews related separation methods, forming the theoretical foundation

for the proposed approach. The problem formulation of dual-channel TSE

in underdetermined conditions was introduced, highlighting the challenges

posed by multiple interfering sources and limited microphones. Conven-
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tional blind source separation (BSS) methods, including ICA, FDICA, and

IVA, were discussed, followed by the introduction of the geometric source

separation (GSS) framework and geometric constraint-based IVA (GCIVA)

method, which utilizes spatial information as the cue to achieve target se-

lection. The limitations of these methods in underdetermined conditions,

particularly in source modeling, were addressed. To address these limita-

tions, deep generative models, specifically Conditional Variational Autoen-

coders were introduced as a more powerful approach for modeling source

signals. The multichannel variational autoencoder (MVAE) method was also

reviewed, highlighting its strengths in determined conditions and its limi-

tations in underdetermined scenarios. Finally, this chapter presented the

evaluation metrics used throughout the study, including SIR, SDR, SAR,

and SNR, which assess separation quality and robustness. These discussions

laid the groundwork for the development of the proposed TSE framework in

subsequent chapters.
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Chapter 3

Dual-channel TSE System for

Underdetermined Conditions

3.1 Overview

This chapter details the proposed direction-aware TSE approach for un-

derdetermined conditions, addressing two main challenges. Firstly, the pro-

posed framework incorporates linear GCs based on the target’s DOA to select

the target in the underdetermined TSE problem. Secondly, to handle both

target speech and interference in complex scenarios, this chapter introduces

a novel CVAE, named Interference CVAE (IntCVAE). IntCVAE is designed

to effectively model mixed speech signals, particularly in situations involving

varying numbers of speakers.
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Figure 3.1: Proposed framework of directional target speaker extraction
based on dual-channel system.

3.2 Direction-aware TSE method in underde-

termined conditions

3.2.1 Proposed framework

Figure 3.1 shows the framework. The DOA of the target is used to design

Jgc(W) on two channels. On channel 1, also called the target channel, the

parameter b1 in the GC given by Eq. (2.16) is set to 1 to create a delay-

and-sum (DS) beamformer, which yields a spatial beamformer towards the

direction of the target. So the GC on the target channel is shown as

Jone
gc (W) = λ1

∑
f

|wH
1 (f)d(f, α)− 1|2. (3.1)

A preliminary estimation of the target can be obtained by calculating
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s1(f, n) = wH
1 (f)x(f, n). (3.2)

On channel 2 on the other hand, also called the interference channel,

b2 = 0 is set in Eq. (2.16) to generate a null beamformer, which serves as

a blocking matrix (BM) to suppress the target source and preserves all the

other interferences. The GC on the interference channel is given as

Jnull
gc (W) = λ2

∑
f

|wH
2 (f)d(f, α)|2. (3.3)

The interference mixture can be obtained from the output of the interference

channel as

s2(f, n) = wH
2 (f)x(f, n). (3.4)

Two CVAEs are used to model sources. The set of demixing matrices W

can be updated based on the updated V . Subsequently, an IRM is calculated

using the extracted interference mixture and the observed mixture. Finally,

the target signal can be extracted by calculating the product of the T–F

mask and target channel output.
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3.2.2 CVAE-Based target and interference source mod-

els

To extract the target speaker in the underdetermined condition of mul-

tiple interfering speakers, it is desired to accurately model the single target

speaker’s speech and interference mixture speech. Two CVAEs are used to

model these two components. The first is TarCVAE from MVAE, which

has been introduced in Sect. 2.6.1. The second is the proposed interference

CVAE (IntCVAE), which will be elaborated in the following parts of this

section.

Figure 3.2 illustrates the structure of IntCVAE. TarCVAE, originally in-

troduced in MVAE [39], is utilized on the target channel to model the single

target signal. On the interference channel, IntCVAE is proposed as the source

model. Unlike TarCVAE, which models a single speaker, IntCVAE takes a

mixture of multiple speakers as input S, while c is a one-hot vector repre-

senting the number of speakers present in the mixture. In the separation,

only the decoder is used to model the source spectrogram by estimating the

latent space variable z and the conditional variable c as the source model

parameters. The decoder can output the variance matrix of sources, which

can be used in the estimation process of the demixing matrix. By incorpo-

rating TarCVAE and IntCVAE on the two respective channels, the proposed

framework enables effective modeling of the target speaker and the inter-

ference mixture, both of which are separated via the GCs-based approach.

This design establishes a robust and adaptable source modeling strategy for

dual-channel systems operating in underdetermined conditions.
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Figure 3.2: Illustration of IntCVAE.

3.2.3 TSE algorithm

In the iteratively demixing matrix estimation, the source model v(f, n) of

a single target speaker’s speech and interference mixture’s speech obtained

by CVAE is used in the first term of the objective function, which is given

by Eq. (2.7).

The update rule for W(f) is the VCD method, which is derived from

the GCIVA method in Sect. 2.4.2. This enables the iterative refinement

of the demixing matrix using the objective function defined in Eq. (2.18).

Assuming only a dual-channel case as in Sect. 2.2, the derived update rules

are summarized as
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uj = D−1
j W(f)−1ej (j = 1, 2), (3.5)

û1 = λ1D
−1
1 d, (3.6)

hj = uH
j Djuj (j = 1, 2), (3.7)

ĥ1 = uH
1 D1û1, (3.8)

wj(f) =


ĥ1

2h1
[−1 +

√
1 + 4h1

|ĥ1|2
]u1 + û1 (j = 1),

1√
h2
u2 (j = 2),

(3.9)

where Dj = E[x(f, n)xH(f, n)/vj(f, n)] + λjdd
H and ej is the jth column of

the identity matrix (j = 1, 2). TarCVAE and IntCVAE are used to output

the variances vj(f, n), whereas their source model parameters are updated

by backpropagation (BP). The global-scale parameter G = {gj}j is updated

as

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ2
θ(f, n; z, c)

. (3.10)

where F and N refers to the number of frequency indices f and time indices

n. The proposed algorithm is thus summarized as follows
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Algorithm 2 CVAE-based TSE
Require: Network parameters θ and ϕ of two CVAEs trained using Eq.

(2.28), observed mixture signal x(f, n), iteration number L

1: randomly initialize W and Ψ = {z, c}

2: initialization: update W using a BSS method such as ILRMA

3: for l = 1 to L do

4: for j = 1 to 2 do

5: sj(f, n) = wH
j (f)x(f, n)

6: (updating parameters of source model)

7: initialize gj using Eq. (3.10)

8: for k = 1 to 100 do

9: update Ψ using BP with log pθ(S|z, c)

while keeping θ fixed

10: end for

11: compute v(f, n) using Eq. (2.32)

12: (updating demixing matrices)

13: update wj(f) using Eqs. (3.5) to (3.9)

14: end for

15: end for

Unlike the GCIVA algorithm in Sect. 2.4.2, where the demixing matrix

is updated using auxiliary variables Qj(f) derived from the assumed GCIVA

source model based on spherically symmetric multivariate Laplace distribu-

tion for single source modeling, the CVAE-based TSE method updates the

source model parameters vj(f, n) iteratively through the trained CVAE in
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each iteration. The trained IntCVAE offers greater flexibility in modeling

the interference mixture, enabling more accurate estimation of source model

parameters. This adaptability makes it better suited for the estimation al-

gorithm of the demixing matrix in underdetermined conditions.

3.2.4 Postprocessing based on T–F Mask

In underdetermined conditions with multiple interferences, our GC-based

method generates the DS beamformer that serves as the initial extraction of

the target. On the other hand, the null constraint towards the target direc-

tion functions as a BM, allowing the extraction of the interference mixture

excluding the desired target on the corresponding channel. However, un-

derdetermined conditions often lead to the initial target extraction being

disturbed by the presence of multiple interfering speakers. To enhance the

final extraction result, a T–F mask is developed for postprocessing. This

T–F mask is an IRM, which calculates the ratio between the spectrogram

energies of the interference and the observed mixtures. The extracted target

ŝtar(f, n) is

ŝtar(f, n) = ŝ1(f, n)(1−
|ŝ2(f, n)|2

|x(f, n)|2 ). (3.11)
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3.3 Improved TSE method against DOA er-

rors

3.3.1 Impact of DOA errors

In an acoustic environment, whether for GSS or other TSE methods based

on spatial information, the DOA is one of the most prevalent and critical in-

formation in calculating geometric constraints or generating beamformers.

Accurate DOA information is required for such systems. However, estimat-

ing the DOA of the speaker is not simple. Researchers found that in many

practical applications, the error in DOA information will bring significant

errors to the steering vector, which is the main reason for the degradation

of the performance in many systems [61] [62] [63]. Especially in underdeter-

mined conditions, where the number of generated beams in GSS is limited by

the number of microphones, errors of the given DOA will lead to the wrong

steering vector. In the field of robust adaptive beamformer, the challenge

of inaccurate DOA information is commonly addressed as a DOA mismatch

issue.

Over the years, several attempts have been made to address this issue.

Some significant research has been made in developing robust adaptive beam-

former methods, particularly in enhancing their resilience to steering vec-

tor inaccuracies [64]. Among them, the imposition of multiple linear con-

straints along with minimum variance beamformer has been considered a

useful method [65–68]. These methods are designed to widen the main beam

in the beampattern, compensating for uncertainties in the DOA information.
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However, adding these extra constraints reduces the beamformer’s degrees

of freedom, limiting its capability to suppress unwanted signal components.

The error in DOA remains in the calculation of the steer vector. As long as

there is a fixed error in the DOA that is given to the system and it cannot

be modified in the process of estimating the beam, such DOA mismatch will

inevitably bring errors to the calculation of the steering vector.

Therefore, to address this problem, this section proposes a robust TSE

algorithm against DOA estimation errors based on the former framework.

The objective function of the estimation of the demixing matrix is refined to

enable the given DOA can be updated in this processing.

3.3.2 Improved method with DOA modification

In estimating the demixing matrix, the objective function is shown by

Eq. (2.18). In the second part of this equation, which is the linear GC, the

DOA α is fixed. In this case, if the given α is different from the true direction

of the target, the steering vector d(f, α) is forced toward the wrong location

instead of the desired target in the direction α. This mismatch will cause the

extracted source in this direction to contain residues of other audio sources.

To solve this problem, this section improves the original proposed objective

function by adding the L2-NORM of the target DOA as the regularizer. The

term of the L2-NORM of the target DOA α is calculated as

Jc(α|α0) = λα||α− α0||22. (3.12)
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In this regularizer, α0 is the estimated result of the target DOA, which is

known in advance as prior information in our system, whereas α is the DOA

target used to calculate the geometric constraint Jgc(W , α), which is set as

a variable and can be updated in the process of estimating the demixing

matrix. The improved objective function is shown as

L(W ,V , α)

= − log p(X|W ,V) + Jgc(W , α) + Jc(α|α0).

(3.13)

To obtain the optimal DOA, a GD (gradient descent)-based algorithm is

adopted to update α. In this algorithm, the DOA after each iteration will

be used to correct the geometric constraints in the next iteration. Based

on the updating rule of the demixing matrix in Sect. (3.2.3), the improved

algorithms with variable DOAs are summarized as follows
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Algorithm 3 CVAE-based TSE with DOA modification
Require: Network parameters θ and ϕ of two CVAEs trained using Eq.

(2.28), observed mixture signal x(f, n), iteration number L, estimated

DOA α̂ is given.

1: randomly initialize W and Ψ = {z, c}

2: initialization: update W using a BSS method such as ILRMA

3: for l = 1 to L do

4: for j = 1 to 2 do

5: sj(f, n) = wH
j (f)x(f, n)

6: (updating parameters of source model)

7: initialize gj using Eq. (3.10)

8: for k = 1 to 100 do

9: update Ψ using BP with log pθ(S|z, c)

while keeping θ fixed

10: end for

11: compute v(f, n) using Eq. (2.32)

12: (updating demixing matrices)

13: update wj(f) using Eqs. (22) to (26)

14: (updating DOA)

15: for h = 1 to 100 do

16: update DOA α using GD with Eq. (3.13), (2.16),

and (2.17)

17: end for

18: end for

19: end for
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3.4 Experimental evaluations

3.4.1 Training condition

The training data was from the Wall Street Journal (WSJ0) corpus [69].

The WSJ0 folder si_tr_s (around 25 h) was used to train TarCVAE, which

contains 101 speakers with 141 sentences per speaker. Speaker identities

were considered as label c, which was presented by a 101-dimensional one-

hot vector. Whereas for the training of IntCVAE, the training data was

generated by linearly mixing clean speeches without additional background

noise. Nine groups of a mixture of speeches of 2 to 10 speakers with 200

utterances per group (around 9 h) were used. The label was presented by

a nine-dimensional one-hot vector to indicate the number of speakers of the

mixture. In these mixtures, each source’s energy was kept equal, ensuring a

linear and uniform mixing of the speech signals. This method can maintain

consistent energy levels across all sources, resulting in an evenly balanced

audio mix where no single speaker’s voice dominates the composite signal.

The architectures of networks are described as follows. The CVAE in

both TarCVAE and IntCVAE was the same architecture as in [39], designed

with an encoder, a latent space, and a decoder. The encoder consists of

three convolutional layers: two two-dimensional gated CNN layers followed

by a regular two-dimensional CNN layer. These layers can incrementally

encode the input spectrogram with a conditional variable, converting it into

the latent space. The decoder mirrors the encoder with two two-dimensional

gated CNN layers and a final two-dimensional convolutional transpose layer,

enabling it to reconstruct the input spectrogram. The CVAEs were trained
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Table 3.1: Average SDRs [dB] of clean signal and mixed signal outputs
obtained by different CVAEs.

single speech mixed speech
TarCVAE 18.25 13.65
IntCVAE 15.57 17.74

using the Adam optimizer, with learning rates of 0.0001 for the CVAEs, and

were trained 1000 epochs. All implementations were based on PyTorch 1.8.1,

with hardware conditions of a computer with Intel(R) Xeon(R) Gold 6248

CPU@ 2.50GHz, 32GB RAM, and one NVIDIA RTX 3090 GPU.

3.4.2 Evaluation of the reconstruction power

Evaluation condition

To evaluate the reconstruction ability of our trained CVAEs on single

speech and mixed speech signals, this section took the clean signals of one

speaker and the mixed signals of two speakers as the inputs of TarCVAE

and IntCVAE and calculated the SDR of the output reconstructed signal

to the original signal. The higher the SDR is, the more similar the CVAE

output signal is to the original signal. In the evaluation of the reconstruction

capability of a single speech, 50 utterances were randomly selected as test

signals from the WSJ0 folders si_dt_05 and si_et_05 where the number of

speakers was 18. In the evaluation of the mixed-speech reconstruction capa-

bility, 50 test signals mixed from two different randomly selected speakers

were generated.
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(a) Original clean speech. (b) Single speech recon-
structed by TarCVAE.

(c) Single speech reconstructed
by IntCVAE.

(d) Original mixed speech. (e) Mixed speech reconstructed
by TarCVAE.

(f) Mixed speech reconstructed
by IntCVAE.

Figure 3.3: Magnitude spectrograms of reference sources and sources
reconstructed by CVAEs.

Evaluation results

Table 3.1 shows the average SDRs of signals reconstructed by different

CVAEs for the input clean and mixed signals. The results show that Tar-

CVAE has a better reconstruction capability for single speech signals than

IntCVAE, whereas IntCVAE surpasses TarCVAE in the reconstruction for

mixed speech signals. Fig. 3.3 shows examples of the CVAE source model

fitted to the spectrogram of the original clean and mixed speech. As shown

by Figs. 3.3.(a), 3.3.(b), and 3.3.(c), it can be observed that spectral struc-

tures of the single speech especially in the low-frequency range are more

precisely reconstructed by TarCVAE than those by IntCVAE. As for Figs.

46



3.3.(c), 3.3.(d), and 3.3.(e), it can be observed that IntCVAE can recon-

struct the spectral structures of the mixed speech more precisely than Tar-

CVAE. In contrast to the MVAE method, which solely employs TarCVAE,

our approach’s inclusion of IntCVAE is particularly beneficial for effectively

handling mixed speech in underdetermined conditions.

3.4.3 TSE performance in underdetermined conditions

Evaluation condition

In the evaluation, test mixture signals were generated by simulating two-

channel recordings of three sources where room impulse responses (RIRs)

were synthesized by the image source method (ISM) [70]. The ISM was

chosen for its computational efficiency and ability to accurately simulate

essential room acoustic characteristics, such as reflections and reverberation.

This approach also provides acoustics control over variables like the position

of speakers. Figure 3.4 shows an example of the relative position of three

sources and two microphones. The interval of microphones was set at 5 cm.

The evaluation was conducted under three different reverberant conditions

with reverberation times (RT60) of 28 ms (anechoic), 200 ms, and 470 ms.

Three speakers were randomly selected from the WSJ0 folders si_dt_05 and

si_et_05. Three speakers were randomly located at angles from 0◦ to 180◦,

in different directions, with the minimum angle between speakers set to 10

degrees. The images of three speakers were mixed using SIR uniformly. 60

tests under each reverberation condition were conducted. The average length

of the test utterance was 10 seconds.
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Table 3.2: Comparison between baseline methods and proposed methods.

Method
Application

scenario

Source

model

Target

selection

Post

filter

DOA

modification

GCIVA Determined Laplace ! Linear N/A

NL-GCIVA Underdetermined Laplace ! Nonlinear N/A

MVAE Determined TarCVAE N/A Linear N/A

NL-MVAE Underdetermined TarCVAE N/A Nonlinear N/A

Proposed method Underdetermined
TarCVAE

+ IntCVAE
! Nonlinear N/A

Proposed method
with DOA modification

Underdetermined
TarCVAE

+ IntCVAE
! Nonlinear !

The evaluation selected GCIVA and MVAE as the baseline methods, and

to conduct an ablation study on different components of our proposed meth-

ods, our designed T–F mask was incorporated into GCIVA and MVAE for

nonlinear postprocessing, resulting in two additional baselines, namely, non-

linear GCIVA (NL-GCIVA) and nonlinear MVAE (NL-MVAE). These non-

linear variant methods can be utilized in underdetermined cases owing to the

designed T–F mask. Table 3.2 presents a comparison between the baseline

and proposed methods.

We computed the SDR, SIR, and SAR of the extracted target to the

reference signal to evaluate the extraction performance. The alignment of

the extracted target and the reference signal is important in the evaluation.

Since the DOA of the desired speaker α was known, the signal in the direction

α was set as the ground truth. For our method and other GC-based baselines,

the output at the corresponding channel was used as the extracted target.

For baselines without GC-based target selection, all separated signals were

evaluated and the one with the best evaluation result was selected as the
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Figure 3.4: Configuration of evaluation, where △ and × denote the target
and interferences, respectively, and α is the DOA of the target.

extracted target.

Evaluation results

Table 3.3 shows the evaluation results of the extraction performance. Our

proposed method outperforms all baseline methods, particularly in terms

of SDR and SIR. By comparing GCIVA with NL-GCIVA and MVAE with

NL-MVAE, it can be seen that the T–F mask’s improvement effect on per-

formance is limited without enhancing the source model. By comparing

NL-MVAE with NL-GCIVA and the proposed method, it can be observed

that a more powerful source model can bring improvement to the extraction

performance. The proposed method, combining directional information and

the CVAE source model, successfully enhances the extraction performance,

as observed in its comparison with all baseline methods, especially in terms

of SIR and SDR (p < 0.05 in paired samples t-test).
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Table 3.3: Average SDR, SIR, and SAR [dB] of three-speaker case.

Method Anechoic
SDR SIR SAR

GCIVA 9.65 12.67 12.25
NL-GCIVA 9.98 13.05 12.38

MVAE 12.05 13.18 13.06
NL-MVAE 12.26 14.75 13.31
Proposed 15.65 23.39 12.65

Method RT60 = 200ms
SDR SIR SAR

GCIVA 8.64 11.75 11.80
NL-GCIVA 9.14 12.16 11.97

MVAE 10.84 12.28 12.02
NL-MVAE 11.34 13.25 12.54
Proposed 14.32 20.28 12.37

Method RT60 = 470ms

SDR SIR SAR
GCIVA 6.34 10.37 9.97

NL-GCIVA 7.13 11.45 10.07
MVAE 8.67 11.68 9.80

NL-MVAE 9.33 12.05 10.12
Proposed 12.58 18.74 11.76
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3.4.4 Evaluation of the impact of the angle between

sources and distance between sources and mi-

crophones on the performance of the proposed

method

In the previous section, the effectiveness of the proposed method under

the underdetermined conditions was confirmed. Considering that the selec-

tion of targets depends on spatial information, the observed spatial properties

of audio signals always depend on the spatial distribution of a sound source,

the sound scene acoustics, and the distance between the source and the mi-

crophones. In particular, one potential problem of the proposed method is

its limited discriminative capability when any of the interference speakers

shares a close position with the target speaker in space, even if they are

far apart, referred to as the spatial overlap issue [71] [72]. Moreover, the

distance between the source and microphones may have played some role in

directional TSE. The farther the sources are from the microphones, the lower

the sound pressure level will be, which may lead to a challenging situation.

In this evaluation, the impact of the angle between the desired target and

the nearest interference was evaluated, which can be considered as the spatial

resolution of the GC-based TSE method.

Evaluation condition

For evaluation, RIRs by ISM for the same room shown in Fig. 3.4 with

a reverberation time of RT60 = 150 ms were simulated. Three speakers were

randomly located in the range of 0◦–180◦. The test dataset was the same as
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Figure 3.5: Configurations of the test space.

Figure 3.6: Average SDR, SIR, and SAR of proposed method in 3-speaker
case.

those in Sect. 3.4.3. In the test space, all speakers were randomly located in

different positions with the angle between the target and the nearest interfer-

ence speaker of four ranges: 5◦–15◦, 15◦–30◦, 30◦–50◦, 50◦–70◦, and 70◦–90◦.

All sources kept the same distance to the center point of the dual-microphone

array of 0.5–4.0 m with a resolution of 0.5 m. The test space in the simulated

room is shown in Fig. 3.5.
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Evaluation results

Figure 3.6 shows a summary of the evaluation results of the performance

of the proposed method at different interval angles between the target and the

nearest interference and different distances between the source and the center

of the microphone array. To analyze the impact of these two variables, the

average performance over all angle ranges at each distance and the average

performance at all distances in different angle ranges are summarized in

Figs. 3.7(a)–3.7(c). As expected, the proposed method showed reduced

performance when the source directions were closer. Particularly when there

is interference within 30 degrees around the target, the performance will

decline significantly. It can also be observed that when the angle is less than

15 degrees, such a decline trend becomes more significant.

3.4.5 Evaluation of DOA modification

Evaluation condition

In this section, the impact of DOA errors on our proposed method and

the robustness of the proposed method against DOA errors were evaluated.

Note that the impact of DOA errors is closely related to the angle between

sources. For example, when the interval angle between the target speaker and

the nearest interference source is large, even if the estimated DOA has some

errors, the impact on the result is relatively limited. Particularly when the

error is within 0.5 times the interval angle, that is, the estimated target DOA

was biased to the target side in the space between the target speaker and the

interference source, the spatial filter calculated by geometric constraints will
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(a) Average SIR over
interval angle. (b) Average SDR over

interval angle. (c) Average SAR over
interval angle.

(d)
Average SIR over the distance
between sources and center of

the microphone array. (e)
Average SDR over the

distance between
sources and center of the

microphone array.

(f)
Average SAR over the distance
between sources and center of

the microphone array.

Figure 3.7: Average performance of the proposed method with different
interval angles and distances between sources and center of the microphone

array.

tend to extract the target signal from the mixed signal. Therefore, instead of

using the absolute error for the evaluation, this evaluation used the relative

DOA error and compared it with the interval angle. For example, if the angle

between the target and the interference is 60◦ and the estimated target DOA

error is 12◦, then the relative DOA error is considered 0.2. The test range

in this evaluation was set from 0.1 to 1.0 relative DOA errors. All sources

were randomly located at angles from 0 to 180 degrees in the simulated room

shown in Fig. 3.4. The distance from all sources to the center of the dual-

microphone array was 1 m. To prevent the impact of multiple interference

sources, the relative DOA error in each experiment was biased towards the
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interference source nearest to the target. The evaluation was carried out in

the simulated room shown in Fig. 3.5 with RT60 = 150 ms. Three sources

were located randomly with an interval angle between the target and the

nearest interference of 30◦–90◦, and the distance of each source from the cen-

ter of the microphone array was 1 meter. This evaluation focused on SIR

and SDR as they better reflect separation performance in directional TSE

systems. Changes in SIR and SDR indicate the directional bias of the ex-

tracted signal. For instance, significant drops or negative values in SIR and

SDR suggest that the extracted signal is shifting toward interference sources.

SAR primarily assesses artifacts introduced during processing and its inter-

pretation is less direct compared to SIR and SDR, as it reflects processing

artifacts that may not directly correlate with spatial separation performance.

SDR already encompasses the trade-off between distortion and artifacts. For

simplicity and clarity, this section limited the analysis to SIR and SDR.

Evaluation results

Figure 3.8 shows the SIR and SDR results with different relative DOA

errors of the proposed method and the proposed method with DOA modifi-

cation. The orange and blue lines represent the average performance of the

two methods in different relative DOA error ranges. For example, a point

with a horizontal axis of 0.3 represents the average result of DOA estimation

error within 0.2-0.3. With increasing relative DOA error, the two proposed

methods show different degrees of extraction performance. Unlike the pro-

posed method, the proposed method with DOA modification is more stable

as error increases and has a smaller performance reduction, which means that
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(a) The average SIR with different relative DOA errors.

(b) The average SDR with different relative DOA errors.

Figure 3.8: Average SIR and SDR with different relative DOA errors of two
proposed methods.

it is more robust to DOA errors than the previously proposed method without

DOA modification. Additionally, it can be observed from Fig. 3.8 that the

SIR and SDR of these two methods become negative when the relative error

exceeds 0.5 times the interval angle. This relative error of 0.5 corresponds

to the case where the DOA provided to the system lies equidistant between
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the target speaker and the nearest interfering speaker in terms of angular

separation. For example, if the angular separation between the target and the

nearest interferer is 60°, a relative error of 0.5 indicates that the given DOA

deviates by 30° toward the interfering speaker. In such cases, the extracted

signal transitions from the target speaker to the nearest interferer due to the

skewed input DOA, which highlights the importance of the proposed DOA

modification method robust against DOA errors.

3.5 Summary of Chapter 3

This chapter presented a dual-channel geometrically constrained TSE

method for underdetermined conditions based on the CVAE source model.

Our dual-channel algorithm designed based on the GSC structure can ef-

fectively utilize the spatial information of the target speaker. As the main

novelty of this research, this chapter first utilizes CVAE to model the mixed

speech signal, which overcomes the limitations of the source model in the

traditional BSS algorithm in underdetermined conditions. As another con-

tribution, the TSE algorithm with DOA modification is proposed to overcome

the negative impact of DOA estimation errors.

The experimental results demonstrated the following. (1) The proposed

IntCVAE source models effectively represent mixed speech under the un-

derdetermined conditions. (2) Compared with baselines, our proposed TSE

method achieved better performance in underdetermined conditions. (3) Ow-

ing to the algorithm’s dependence on spatial information, the performance

is affected by the interval angle of sources. However, it is less affected by
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the distance between the source and the microphone array, and (4) the pro-

posed method with DOA modification reduced the negative impact of DOA

estimation errors. It is worth noting that this chapter only focuses on the

processing of clean environments without background noise.
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Chapter 4

TSE in Noisy Underdetermined

Conditions based on CVAE

with Global Style Token

4.1 Overview

In realistic applications, environmental noise is a significant factor along-

side interference speakers. The performance of a TSE system is easily de-

graded by such noise. Although the IntCVAE source model proposed in

Chapter 3 has shown its effectiveness in underdetermined conditions, it still

has limitations in modeling noisy mixed speech when environmental noise ex-

ists. One reason comes from the one-hot vector-based labels in the training of

IntCVAE. Under clean underdetermined conditions without environmental

noise, the objective of IntCVAE training is for the IntCVAE to learn source

models from mixed signals with varying numbers of speakers. The number
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of speakers in mixtures of clean multi speaker signals can be effectively rep-

resented by discrete one-hot vectors. However, when noise is present, its

varying levels are continuous variables. In this case, it is more straightfor-

ward to use continuous representations to model mixed speech with different

numbers of speakers and noise levels.

To address this issue, this section proposed a new source model called

GST-IntCVAE (GIntCVAE for short) for modeling noisy interference mix-

ture signals. GIntCVAE introduces GSTs [73] to generate embeddings of

noisy mixed speech as conditional variables in the CVAE. A GST is a set

of embeddings that captures global acoustical characteristics observed over

an utterance, such as the expressiveness of speech and it is trained in an

unsupervised manner.

4.2 Source model for noisy underdetermined

conditions based on CVAE with GST

Figure 4.1 illustrates the proposed GIntCVAE. TarCVAE is the same

as Fig. 2.1 in Sect. 2.6.1, which models a single target speaker’s voice on

channel 1, whereas GIntCVAE models the interference mixture with noise on

channel 2. Different from the former IntCVAE, GIntCVAE incorporates a

GST module to generate embeddings of noisy mixture speech. Therefore, in

the training stage, there is no need to prepare labels for the training dataset.

Since the GST can be trained in an unsupervised manner without additional

labels, the GST and CVAE are jointly trained using only the training loss of
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Figure 4.1: Illustration of and GIntCVAE.

the CVAE.

The GST module consists of a reference encoder and a noisy mixture

token layer. The input audio is initially compressed into a fixed-length vec-

tor. This vector then serves as the query for the attention module in the

noisy mixture token layer, which calculates a set of weights to measure its

similarity to each token. The weighted sum of tokens serves as the noisy

mixture embedding, which is incorporated into the encoder and decoder as

the conditional variable c. This embedding captures the acoustic conditions

of noisy interference mixture, such as the number of speakers and noise level.

4.3 Inference processing of the new proposed

method

In the inference stage, only the decoder is used to model the source and

output distribution parameters, with GST weights being updated using BP
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while fixing the noisy mixture tokens. The demixing matrix is updated as

iteratively as the algorithm in Sect. 3.2.3. The algorithm of demixing matrix

estimation in this section is summarized as follows

1. Initialize W and Ψ = {z, c}.

2. Iterate the following steps for each j:

(a) Update wj(f) by calculating Eqs. 3.5 to 3.9.

(b) Update z and c by backpropagation, where only GST weights

are updated while fixing the noisy mixture tokens.

(c) Update gj by calculating Eq. 3.10.

(d) Update v by calculating Eq. 2.32.

4.4 Experimental evaluations

4.4.1 Training conditions

The TarCVAE is the same as Sect. 3.4.1. For GIntCVAE, it was trained

on 20 hrs of noisy mixed audio data, where the clean source for 19 groups of

mixed speech with 2–20 speakers was generated by linearly mixing multiple

speakers from the WSJ0 si_tr_s folder. The noisy training dataset was

generated by mixing the clean dataset with 4 types of diffuse noise at varying

SNR levels from the DEMAND dataset [74], which contains 6 types of diffuse

noise. There were 4 SNR conditions for training of GIntCVAE: 0, 10, 20,

and 30 dB.

The architectures of our networks are described as follows. The CVAEs

in TarCVAE and GIntCVAE is the same as Sect. 3.4.1. For the GST mod-
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ule, the architecture follows [73], containing a reference encoder and a style

token layer (SLT). The reference encoder processes the spectrogram input

through six 2D CNN layers with progressively increasing channels, followed

by a 128-unit GRU. The output of the reference encoder serves as the ref-

erence embedding, which is passed to the SLT to interact with the 10-token

embedding bank via a multi-head attention module. The final output style

embedding is a 128-dimensional vector. The other training settings like the

learning rate are the same as Sect. 3.4.1.

4.4.2 Investigation of embedding space of GIntCVAE

This evaluation investigated the embedding space of the trained GIntC-

VAE by visualizing the latent representations produced by the trained GST,

which aims to analyze what the trained GST learned regarding different

aspects. Since GIntCVAE was trained on a dataset of noisy mixed multi

speaker signals and models the noisy multi-interference mixture during infer-

ence, the evaluation wants to determine the impact of the number of speakers

and SNR on GST’s capability to discriminate noisy mixed speech.

Evaluation condition

In the evaluation, different SNR conditions of noisy mixed signals from

different numbers of speakers were used as inputs for the trained GIntCVAE.

The dataset for this evaluation is constructed as follows. This dataset was

generated by mixing different numbers of speakers and noise with different

SNR conditions. There are seven categories of numbers of speakers, following
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a log scale: 2, 4, 8, 16, 32, 64, and 128. The SNR conditions are divided

into eight categories: −20, −10, 0, 10, 20, 30, 40, and 50 dB. There are 50

samples for each number of speakers and SNR condition. Therefore, there

are 8x7x50 samples in this evaluation. The t-distributed stochastic neighbor

embedding (t-SNE) [75] was used to compress all the 128-dimensional GST

embedding outputs to 2D representations.
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Figure 4.2: t-SNE visualization of GST by SNR conditions.

Figure 4.3: t-SNE visualization of GST by numbers of speakers.
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Evaluation results

We visualized the features compressed by t-SNE with the same input

8×7×50 samples, using eight colors to represent different SNR conditions

and seven colors to represent varying numbers of speakers. Figures 4.2 and

4.3 show the results. The GST embedding space shows clear clustering under

different SNR conditions, indicating that the trained GIntCVAE effectively

captures noise level information in noisy mixed speech. For varying the

number of speakers, the clustering effect is less pronounced, although certain

patterns can still be observed in each SNR cluster. This suggests that the

trained GST finds SNR information in mixed speech easier to learn and

distinguish than information on the number of speakers.

4.4.3 Experimental evaluations of TSE in noisy under-

determined conditions

Evaluation condition

This evaluation tested the proposed method and baselines on three-source

mixtures with a fixed reverberation time of 150 ms. Two-channel recordings

synthesized by the ISM were applied to create mixtures of three speakers with

noise. The simulated room is shown as in Fig. 3.4 in Chapter 3. The speakers

were randomly located at angles from 0 degrees to 180 degrees in different

directions, with a minimum angle between speakers set to 10 degrees. The

three speakers were randomly selected from the WSJ0 folders si_dt_05 and

si_et_05, and noise data came from another two types of DEMAND noise,

excluding training data. The methods were evaluated under 3 different SNR
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conditions of -10, 10, and 30 dB, using the SDR, SIR, SAR, and SNR as

performance metrics.

We compared our proposed methods to several baselines including GCIVA

[31] and MVAE [39]. To evaluate the effect of GIntCVAE in TSE per-

formance, which introduces GST in IntCVAE, this evaluation also used a

method from Chapter 3 as a baseline, which applied TarCVAE+IntCVAE.
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Table 4.1: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = −10 dB.

Method SIR SDR SAR SNR

GCIVA −3.68 −8.25 −6.39 −5.31

MVAE −3.12 −7.12 −2.44 −4.78

TarCVAE + IntCVAE 1.03 −3.24 1.25 −2.23

TarCVAE + GIntCVAE 5.34 1.55 3.79 2.03

Table 4.2: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = 10 dB.

Method SIR SDR SAR SNR

GCIVA 2.41 1.78 5.06 1.08

MVAE 4.68 2.14 6.59 2.13

TarCVAE + IntCVAE 8.76 4.43 6.15 4.37

TarCVAE + GIntCVAE 13.32 9.53 10.15 7.27

Table 4.3: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = 30 dB.

Method SIR SDR SAR SNR

GCIVA 6.53 4.38 9.38 4.53

MVAE 9.48 7.18 10.47 5.82

TarCVAE + IntCVAE 15.11 9.61 11.19 8.89

TarCVAE + GIntCVAE 21.12 14.27 12.56 11.81
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Evaluation results

The evaluation results under different noisy conditions are summarized in

Tables 4.1, 4.2, and 4.3. These tables show that the new proposed method in

this chapter consistently achieves enhanced performance across various noisy

conditions, with notable improvements in SIR and SDR (p < 0.05). For

example, at an SNR of -10 dB, the method using TarCVAE and GIntCVAE

achieves an improvement in SIR of 4.31 dB and in SDR of 4.79 dB over the

method using TarCVAE and IntCVAE (p < 0.05). These results demonstrate

the advantage of introducing GST into the source model for noisy interfer-

ence mixtures in GIntCVAE and its effectiveness in noisy underdetermined

conditions with a dual-channel TSE system.

4.5 Summary of Chapter 4

This chapter proposed a method for modeling noisy mixed speech by

integrating GST into CVAE to enhance TSE performance in noisy underde-

termined conditions. The GST is jointly trained with CVAE to form a new

source model, GIntCVAE, in which GST generates a latent representation

of the noisy mixed speech to serve as a conditional variable for the CVAE.

The key features are as follows:(1) Introducing a GST into the CVAE source

model enhances the GSS framework-based TSE method in noisy undeter-

mined conditions. (2) The GST in GIntCVAE effectively learns the mixing

conditions of the interference mixture in noisy mixed speech, especially the

noise level. Experimental results revealed that the proposed method achieved

better performance than the baseline methods in noisy underdetermined con-
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ditions.
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Chapter 5

Neural Postfilter and Enhanced

New Target Source Model for

Enhancing the Extracted

Target with Residual Noise

5.1 Overview

For a TSE problem in noisy underdetermined conditions, the observed sig-

nal can be considered a combination of three components: the desired target

speaker, a mixture of interfering speakers, and environmental noise. The

work in Chapter 3 focuses on clean underdetermined TSE without environ-

mental noise, using TarCVAE and IntCVAE to model clean target speaker

signals and clean interference mixtures, respectively. Building on this, in

Chapter 4, GIntCVAE was proposed to model noisy interference mixtures
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on channel 2 while continuing to use TarCVAE as the source model for chan-

nel 1, aiming to extend the dual-channel directional TSE system to noisy

underdetermined conditions.

In our problem formulation, it is assumed that the GC-based framework

can divide the observed signal into two components: the clean target speaker

on channel 1 and the noisy interference mixture on channel 2. The latter

includes all interfering speakers and environmental noise. On the basis of

this assumption, the proposed framework enables TarCVAE and GIntCVAE

to model these two components separately. However, the extracted target

speaker signal often contains residual diffuse noise. This issue arises because

environmental noise is diffuse rather than a point source. Consequently, with

a limited number of microphones, diffuse noise from sources in the same

direction as the target speaker and nearby areas is inevitably retained by the

beamformer on channel 1.

An effective way to reduce the noise component in the extracted signal

is by applying the postfilter. In our previously proposed framework, an

IRM-based T–F mask was used as the postfilter. Although it is effective

under clean underdetermined conditions, this mask struggles with diffuse

environmental noise. Additionally, a TarCVAE trained on the clean speech of

different speakers is limited in modeling the noisy target speaker with residual

diffuse noise on channel 1. In this chapter, a complex T–F mask estimation

network was adopted as the neural postfilter, and a new GTarCVAE source

model with the neural postfilter was jointly trained.
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5.2 Neural postfilter for estimating complex

T–F mask

Recent studies have shown that the complex T–F mask generated using

a neural postfilter is more effective for speech enhancement than traditional

T–F masks [44]. CNNBLSTM is a widely used architecture for complex T-

F mask estimation in DNN-based speech enhancement tasks [76]. Recent

studies, such as [45], have demonstrated its effectiveness in generating cIRM

for speech enhancement [46]. Compared with the traditional IRM in our

previous method, the cIRM can simultaneously enhance both the magnitude

and phase responses of noisy speech. In the case of using a neural postfilter,

the real and imaginary components of the cIRM are always jointly estimated

by the trained DNN. In this section, this CNNBLSTM-based T–F mask

estimation network is adopted as the neural postfilter.

Here is a brief review of the neural postfilter based on our problem formu-

lation in Sect. 3.2.1. ŝ1(f, n) is the initial extracted target signal on channel

1, which contains residual interferences in channel 1. Then, the neural post-

filter can be represented as

ŝtar(f, n) =M(ŝ1(f, n); β)ŝ1(f, n), (5.1)

whereM is the network for estimating the complex T–F mask, and β is the

set of its parameters. The objective of this neural postfilter is to estimate the

complex T–F mask from the input noisy speech signal for denoising, ensuring
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that the denoised signal closely resembles the original clean target signal.

5.3 Joint network of neural postfilter and Tar-

CVAE

For the source model on channel 1, previous chapters used to keep using

TarCVAE to model a clean target speaker. In the absence of environmental

noise, TarCVAE can effectively model channel 1. However, in the presence

of environmental noise, the diffuse noise mixes with the single target signals,

posing a challenge for TarCVAE, which is trained solely on clean speech

data with one-hot labels representing only the identity of a clean speaker.

Therefore, on the basis of our previously proposed GIntCVAE, a feasible

approach is to introduce a GST into TarCVAE and train it using noisy speech

data. This new source model for modeling a noisy single speaker is called

GST-TarCVAE or GTarCVAE for short.

To model the noisy target speaker on channel 1, the new GTarCVAE

source model should be trained using noisy speech signals. Similarly, the

neural postfilter aims to estimate the complex T–F mask from noisy speech

for denoising, using the training data of noisy speech and corresponding

clean ground truth. Additionally, the GST in GTarCVAE learns the latent

representation of noisy single speakers, which can be introduced into the

neural postfilter to provide the conditional variable, potentially enhancing

the noise robustness in various noise environments. Therefore, this section

proposes a joint trained network of GTarCVAE and the neural postfilter with
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Figure 5.1: Illustration of joint training of GTarCVAE and postfilter.

Figure 5.2: Illustration of GTarCVAE.

a shared GST module.

Figure 5.1 shows the illustration of the training process of the joint net-

work. There are three main parts: GTarCVAE, the shared GST module,

and the neural postfilter. The illustration of GTarCVAE is shown in Figure

5.2. Similar to GIntCVAE in Sect. 4.2, the shared GST module outputs

the token weight as the noisy single speaker embedding from the input of

a noisy single speaker’s speech, which serves as the conditional variable for

both GTarCVAE and the neural postfilter. The network architecture of the

CNNBLSTM-based neural postfilter is the same in [44], and it will be de-

scribed in detail later.
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In the training of the original TarCVAE, the format of the training dataset

is the normalized magnitude spectrogram, while in the training processing

of the neural postfilter in [44], the format is the log-amplitude spectrogram.

Therefore, two different calculation processes were added to obtain two types

of training dataset from the same data source. In addition, for the neural

postfilter, the clean-target training strategy was adopted, where the clean

ground truth is required to calculate the loss in the training. Following the

loss function Eq. 2.28 of the CVAE, it is assumed that S is the noisy training

dataset and Ŝ is the corresponding clean ground truth. The overall objective

function of the training to be maximized is

J (ϕ, θ, β) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]

−KL[qϕ(z|S, c)||p(z)]]−D[M(S|β)S, Ŝ], (5.2)

where D is the function that measures the difference between the denoised

signal and the clean ground truth. Here, this study followed [45] to set D as

the mean-squared-error (MSE).

5.4 Inference processing of the new proposed

method

In the inference stage, the decoder of the trained GTarCVAE and GIntC-

VAE serves as the source model on channels 1 and 2, where the source model

parameters of the noisy target speaker and noisy interference mixed speak-
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ers, the weight sum of GSTs tokens, and the demixing matrix are updated as

iteratively as the algorithm described in Sect. 4.3. Then, the trained neural

postfilter is used to denoise the initially extracted target speaker ŝ1(f, n) on

channel 1. Different from the training stage, the conditional variable for the

postfilter is generated by the trained shared GST in the joint network with

the input of the internal extracted target ŝ1(f, n).

5.5 Experimental evaluations

5.5.1 Training setting of CVAEs and neural postfilter

In the experiments, the joint network of GTarCVAE and the neural post-

filter were trained on 25 hrs of noisy audio data. The clean source data was

obtained from the si_tr_s folder of the WSJ0 corpus [69], which includes

recordings from 101 speakers (50 male and 51 female), each contributing

141 sentences. The clean speech was mixed with four types of diffuse noise

at varying SNR levels from the DEMAND dataset [74], which contains six

types of diffuse noise. GIntCVAE was the same as Sect. 4.4.1, which was

trained on 20 hrs of noisy mixed audio data, where the clean source for 19

groups of mixed speech with 2–20 speakers was generated by linearly mixing

multiple speakers from the WSJ0 si_tr_s folder and then mixing it with the

same noise sources as those used for the joint network of GTarCVAE and

the neural postfilter.

The architectures of our networks are described as follows. The CVAE

in both GTarCVAE and GIntCVAE has the same architecture as in [39],
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which has been described in detail in Sect. 3.4.1. For the GST module, the

architecture follows [73], which has been also described in detail in Sect. 4.4.1.

The neural postfilter employs the CNNBLSTM architecture as described in

[44]. The CNNBLSTM consists of an initial batch normalization and two 1D

CNN layers, followed by a depthwise 2D CNN layer. A linear layer transforms

the input dimension to a hidden dimension of F × N . The BLSTM layers

include 2 bidirectional layers. After that, a final linear layer maps the BLSTM

output back to the dimension of 2F × N . Finally, the output was divided

into two F × N matrices, which constitute the real and imaginary parts of

the complex-valued T-F mask.

The CVAE, GST, and CNNBLSTM were trained using the Adam opti-

mizer, with learning rates of 0.0001 for the CVAE, GST, and the CNNBLSTM.

GIntCVAE was trained for 1000 epochs. GTarCVAE, CNN-BLSTM, and the

joint network were all trained 800 epochs. All implementations are based

on PyTorch 1.8.1, with hardware conditions of a computer with Intel(R)

Xeon(R) Gold 6248 CPU@ 2.50GHz, 32GB RAM, and one NVIDIA RTX

3090 GPU.

5.5.2 Evaluation of TSE with neural postfilter in noisy

underdetermined conditions

Evaluation conditions

This evaluation assessed the proposed method and baselines on three-

source mixtures with a fixed reverberation time of 150 ms. Using the ISM,

two-channel recordings of three speakers with noise in a simulated room were
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synthesized, as shown in Fig. 3.4 in Sect. 3.4.3. Speakers were randomly

positioned at angles from 0° to 180°, with at least 10° between them, and

each speaker was 1 m from the microphone array center. Speakers were

randomly selected from the WSJ0 folders si_dt_05 and si_et_05, and noise

data came from another two types of DEMAND noise, excluding training

data. Evaluations were carried out under SNR conditions of -10 dB, 10 dB,

and 30 dB, with 30 tests per condition. Each test utterance averaged 5–8 s.

Performance was evaluated using the SDR, SIR, SAR, and SNR.

This evaluation selected several related methods as the baselines, includ-

ing GCIVA [31], MVAE [39], and IntCVAE. For the ablation study on differ-

ent components of the proposed source models incorporating GSTs, a joint

network of GST and TarCVAE was trained without the neural postfilter.

Two systems were evaluated: TarCVAE + GIntCVAE and GTarCVAE +

GIntCVAE, both using an IRM as the postfilter. To assess the new neu-

ral postfilter, an independent CNNBLSTM-based neural postfilter without a

GST and a joint network of GST and CNNBLSTM without TarCVAE were

trained, called the GST-Neural postfilter. Additionally, this section evalu-

ated GTarCVAE + GIntCVAE + Neural postfilter, GTarCVAE + GIntC-

VAE + GST-Neural postfilter, and the joint network of GTarCVAE-Neural

postfilter + GIntCVAE. The categorization of each baseline and the proposed

method is summarized in Table 5.1.
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Table 5.1: Comparison between baselines and proposed methods.

Method
Application

scenario

Source

model
Postfilter

GCIVA [31] Determined Laplace N/A

MVAE [39] Determined TarCVAE N/A

Previous method 1 in Chapter 3
Clean

underdetermined

TarCVAE

+IntCVAE
IRM

Previous method 2 in Chapter 4
Noisy

underdetermined

TarCVAE

+GIntCVAE
IRM

Proposed method 1
Noisy

underdetermined

GTarCVAE

+GIntCVAE
IRM

Proposed method 2
Noisy

underdetermined

GTarCVAE

+GIntCVAE
Neural postfilter

Proposed method 3
Noisy

underdetermined

GTarCVAE

+GIntCVAE
GST-Neural postfilter

Proposed method 4
Noisy

underdetermined

Jointly trained

GTarCVAE

+GIntCVAE

Jointly trained

GST-Neural postfilter

Evaluation results

Tables 5.2, 5.3, and 5.4 present a summary of the evaluation results ob-

tained under different noisy conditions. The average SDR, SIR, SAR, and

SNR indicate that our proposed methods consistently achieve improvements

over baselines across various noisy conditions, particularly in terms of SIR

and SDR, with statistical differences observed based on a paired one-sided

t-test (p < 0.05). For example, at a low SNR of −10 dB, Previous method 2

achieves a 4.31 dB improvement in SIR over Previous method 1 (p < 0.05).

Proposed method 4 achieves a further 1.57 dB improvement in SIR over
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Previous method 2 (p < 0.05). These results underscore the advantage of

introducing GSTs into the source model for noisy interference mixtures, sug-

gesting that, in noisy underdetermined conditions with a dual-channel sys-

tem, refining the source model is important for TSE.

Furthermore, the introduction of the CNNBLSTM-based neural postfil-

ter has also shown clear improvement in the TSE performance, with the

cIRM estimated by the neural postfilter surpassing the traditional IRM. For

instance, at a low SNR of -10 dB, Proposed method 4 achieves an average

SDR of 3.28 dB, which is an improvement of 1.73 dB over Previous method

2 and 1.45 dB over Proposed method 1 (p < 0.05). The experimental re-

sults show that the cIRM estimated by neural postfilter suppresses residual

noise better than IRM, and the joint network approach is effective in noisy

underdetermined conditions.
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Table 5.2: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = −10 dB.

Method SIR SDR SAR SNR
GCIVA [31] −3.68 −8.25 −6.39 −5.31
MVAE [39] −3.12 −7.12 −2.44 −4.78

Previous method 1 in Chapter 3 1.03 −3.24 1.25 −2.23
Previous method 2 in Chapter 4 5.34 1.55 3.79 2.03

Proposed method 1 5.63 1.83 3.92 2.34
Proposed method 2 6.34 2.61 4.11 3.03
Proposed method 3 6.87 3.22 4.33 3.25

Proposed method 4 6.91 3.28 4.36 3.32

Table 5.3: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = 10 dB.

Method SIR SDR SAR SNR
GCIVA [31] 2.41 1.78 5.06 1.08
MVAE [39] 4.68 2.14 6.59 2.13

Previous method 1 in Chapter 3 8.76 4.43 6.15 4.37
Previous method 2 in Chapter 4 13.32 9.53 10.15 7.27

Proposed method 1 13.61 9.88 10.56 7.81
Proposed method 2 14.21 10.73 11.16 8.51
Proposed method 3 14.54 11.31 11.55 9.02

Proposed method 4 14.62 11.40 11.52 9.13

Table 5.4: Average SDR, SIR, SAR, and SNR [dB] of the extracted target
in noisy underdetermined environment of SNR = 30 dB.

Method SIR SDR SAR SNR
GCIVA [31] 6.53 4.38 9.38 4.53
MVAE [39] 9.48 7.18 10.47 5.82

Previous method 1 in Chapter 3 15.11 9.61 11.19 8.89
Previous method 2 in Chapter 4 21.12 14.27 12.56 11.81

Proposed method 1 21.45 14.65 12.97 12.21
Proposed method 2 21.74 15.16 13.42 12.76
Proposed method 3 21.98 15.53 13.54 13.02

Proposed method 4 22.03 15.61 13.53 13.10

82



5.6 Summary of Chapter 5

This chapter proposed an improved TSE method for enhancing the ex-

tracted target signal in noisy underdetermined conditions and focuses still

on the dual-channel GSS framework using the minimum number of micro-

phones to leverage spatial information. Although the GIntCVAE has shown

its power in modeling the noisy mixed speech signal, the residual noise in the

extracted target signal is a remaining issue in noisy underdetermined condi-

tions. To better model the target signal with noise, this chapter incorporates

the GST module into the TarCVAE source model, creating GTarCVAE. To

solve the residual noise, this chapter introduces a CNNBLSTM-based neural

postfilter to address residual diffuse noise in the extracted target signal. A

joint network of GTarCVAE and the neural postfilter with a shared GST

module was trained.

The experimental results highlight several points: (1) Introducing a GST

into the CVAE source model enhances the GSS framework-based TSE method

in noisy undetermined conditions. (2) The CNNBLSTM-based neural post-

filter more effectively enhances the extracted target signal with residual noise

than the traditional IRM. (3) The joint network of GTarCVAE and the neural

postfilter performs well in noisy undetermined conditions. Note that all cur-

rent works are based on simulated mixed signals, and the proposed method

is very time-consuming. In the future, this research will further investigate

its application to real recorded signals and develop an online algorithm.
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Chapter 6

Conclusion

6.1 Summary

Target speaker extraction (TSE) in noisy underdetermined environments

poses significant challenges due to multi interference speakers and back-

ground noise with the limited number of microphones. This dissertation

aims to address these challenges by developing a framework that leverages

spatial information through geometric source separation (GSS) to achieve

dual-channel TSE in noisy underdetermined conditions. By progressively im-

proving source models and postfiltering techniques, this work demonstrates

an effective approach to TSE under complex conditions.

The core philosophy of this research lies in combining spatial acous-

tic knowledge with deep source models to leverage their complementary

strengths. Spatial information, specifically direction of arrival (DOA), pro-

vided important cues for target extraction. However, conventional methods

struggle with robustness in underdetermined conditions or DOA errors. In
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Chapter 3, to address these limitations, conditional variational autoencoder

(CVAE)-based source models were introduced. The rationale for selecting

the CVAE source model stems from its ability to handle the intricate varia-

tions in complex acoustic environments. The interference CVAE (IntCVAE)

was proposed. Unlike traditional approaches that rely on fixed or limited

assumptions about source characteristics, target CVAE (TarCVAE) from

the multichannel variational autoencoder (MVAE) method and the proposed

IntCVAE provided a flexible and probabilistic framework for modeling both

target and interference mixture. This flexibility is particularly necessary in

underdetermined conditions. Similarly, DOA modification was introduced

as a necessary enhancement to mitigate the sensitivity of spatial filtering to

DOA estimation errors. In real-world applications, precise DOA estimation

was often challenging due to noise, reverberation, or dynamic speaker move-

ments. By modifying the given DOA to reduce biases toward interference

sources, the proposed method achieved greater robustness, ensuring that the

extracted signal remains closer to the desired target.

In Chapter 4, to extend this approach to noisy underdetermined envi-

ronments, the limitations of the discrete conditioning method in IntCVAE

were addressed. Global style token (GST) was incorporated into the source

model, resulting in the GST-IntCVAE (GIntCVAE) model. The use of GST

is based on its ability to provide continuous conditioning representations,

which better reflect the variability of acoustic conditions, like noise levels

and number of speakers. This flexibility enables the model to adapt more

effectively to different noise levels in mixed speech, addressing the rigidity of

discrete conditioning. Experimental results confirmed that GIntCVAE im-
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proves robustness in noisy underdetermined conditions, establishing a better

foundation for TSE under realistic acoustic challenges.

Despite these improvements, residual noise remains a challenge due to

the limitations of the TarCVAE source model and the traditional ideal ra-

tio mask (IRM)-based postfilter. To address this, Chapter 5 introduced two

key advancements: GTarCVAE and a convolutional neural network–bidirec-

tional long short-term memory (CNNBLSTM)-based neural postfilter. The

CNNBLSTM-based postfilter was chosen for its superior capability to capture

both temporal and spatial dependencies, enabling more precise suppression

of residual noise. By jointly training GST-TarCVAE (GTarCVAE) with the

neural postfilter to estimate a complex ideal ratio mask (cIRM), this ap-

proach ensures not only a reduction in noise but also the preservation of

speech quality, making it a robust solution for extracting target speech in

noisy and complex environments.

Overall, this dissertation presented a dual-channel TSE framework ad-

dressing the challenges of underdetermined and noisy environments. The

philosophy guiding this work is the integration of advanced source modeling

and spatial information through GSS, coupled with the introduction of ro-

bust postfiltering techniques. This dissertation provided a robust framework

for extracting target speech from complex acoustic mixtures. Experimen-

tal results throughout the dissertation validated the effectiveness of these

methods, highlighting their potential for applications in speech processing

systems.
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6.2 Future works

While the methods proposed in this dissertation represent a dual-channel

TSE method in underdetermined and noisy conditions, several areas for fur-

ther research and enhancement remain.

Firstly, all current experiments were conducted using simulated signals,

which may differ in acoustic characteristics and spatial information from

real-world environments. Future research can try to adapt and optimize

the proposed models for real-world acoustic scenarios to ensure practical

applicability.

Additionally, the proposed method is currently computationally inten-

sive. Efforts to improve processing efficiency, potentially through stream-

lined architectures or advanced optimization techniques, would be beneficial

for enabling faster running time.

Another area of interest is to further test and strengthen the method

under more challenging conditions with both high noise levels and strong

reverberation, which are common in many real-world situations. Enhanc-

ing the model’s robustness under these extreme conditions would extend its

applicability and reliability in diverse settings.

The current approach assumes the location of the target speaker is known

in advance. Future research could explore the integration of sound source

localization techniques, allowing the TSE framework to operate effectively

without prior knowledge of the target speaker’s position. Furthermore, ex-

isting methods assume the target speaker remains in a fixed position, but

real-world scenarios often involve dynamic speakers. Extending the frame-
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work to track and extract the target speaker in real-time as their position

changes is another interesting research direction.

In addition, the current cue for target selection relies on spatial informa-

tion. Other potential cues, such as temporal information (e.g., voice activity

detection), spectral characteristics (e.g., voice quality), visual cues (e.g., lip

movements), and others, could also be explored for their applicability.

Extending the proposed methods to scenarios involving more than three

speakers would also be highly valuable. As the number of speakers increases,

the complexity of source separation intensifies. Developing solutions that

maintain performance in densely populated acoustic environments would ex-

pand the scope and utility of this work.
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