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Abstract

Auditory information is integral to daily communication for humans and humanoid

robots alike. While a range of signal processing techniques has been developed to en-

hance auditory data acquisition, most state-of-the-art methods rely on a time-invariant

acoustic transfer system (ATS) to maintain their performance. In dynamic acoustic

environments, however, ATS variability necessitates frequent re-estimation of spatial

filters, which imposes significant computational demands and hinders real-time pro-

cessing. Addressing time-variant ATS challenges is thus a critical step toward enabling

robust and practical applications in real-world scenarios.

This thesis investigates array signal processing under dynamic conditions, with a fo-

cus on auditory systems equipped with circular microphone arrays (CMAs) mounted on

an interactive robot’s head for detecting surrounding acoustic signals. In such scenarios,

the rotational motion of the CMA introduces ATS variability, necessitating innovative

approaches to achieve rotation-robust processing. A beamforming framework named

sound field interpolation (SFI) has been proposed to address this challenge. However,

SFI requires the CMA to be an equally spaced CMA (es-CMA), where microphones

are uniformly distributed with equal angular distances between them. This strict re-

quirement limits its applicability in real-world scenarios, where achieving an es-CMA

is impractical. In most cases, the microphones are non-uniformly distributed, result-

ing in an unequally spaced CMA (unes-CMA). Additionally, for irregularly distributed
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microphones, the exact microphone distribution on a unes-CMA is often unknown. In

this thesis, the term ‘microphone distribution’ refers to the spatial configuration of the

microphones within the array. Furthermore, in more practical conditions, the inter-

active robot’s head is not a perfect sphere, meaning that even achieving a perfectly

circular array is unrealistic, and only a nearly-circular microphone array (NCMA) can

be obtained.

Building on the SFI framework, this thesis systematically addresses three major

challenges—unes-CMAs, unknown microphone distributions, and NCMAs—step by

step, overcoming the inherent limitations of SFI to achieve robust signal interpolation

and beamforming.

First, the thesis introduces the unequally spaced sound field interpolation (unes-

SFI) method to address the positional deviations of microphones in unes-CMAs. By

estimating virtual signals at equally spaced positions, unes-SFI reconstructs before-

rotation signals and enables robust beamforming despite array rotation. Detailed anal-

yses and simulations confirm that unes-SFI significantly improves signal reconstruction

and beamforming performance under various conditions.

Second, to overcome the limitation of requiring prior knowledge of microphone posi-

tions, the thesis presents a novel Generalized Sound Field Interpolation (GSFI) frame-

work. GSFI integrates unes-SFI with unsupervised calibration, employing an iterative

optimization technique to estimate microphone positional errors without pre-existing

knowledge. This approach enables effective interpolation and beamforming for unes-

CMAs with unknown configurations. Simulation results validate GSFI’s robustness,

demonstrating substantial performance improvements over prior SFI and unes-SFI

methods.

Finally, the thesis extends GSFI to address NCMAs, which are prevalent in human-
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computer interaction due to the non-spherical shape of the robot’s head. By construct-

ing a virtual pseudo-CMA (pCMA) through unsupervised calibration, GSFI reduces

spatial complexity and facilitates interpolation for NCMAs. A two-stage strategy is fur-

ther introduced to handle the positional variability of NCMAs during rotation, ensuring

accurate before-rotation signal estimation and robust beamforming. Comprehensive

simulations demonstrate that the proposed two-stage GSFI method consistently out-

performs previous approaches, achieving satisfactory results across diverse scenarios.

In summary, this thesis provides a stepwise progression of advancements in sound

field interpolation for rotation-robust signal processing. Starting from unes-CMAs,

extending to unknown microphone distributions, and culminating in NCMAs, it offers

a comprehensive framework for addressing the challenges posed by dynamic acoustic

environments. The methods presented lay a solid foundation for practical applications

in wearable auditory systems, advancing the field of microphone array signal processing.





1 Introduction

1.1 General background

Auditory communication is a fundamental aspect of human interaction that enables

the exchange of information, emotions, and intentions through sound. Humans rely

heavily on auditory information to navigate complex environments, engage with their

surroundings, and communicate effectively. Similarly, in robotics, acoustic data plays

a vital role in enabling robots to perceive their environments and interact seamlessly

with humans. This has driven significant advancements in array signal processing

techniques aimed at optimizing auditory data acquisition, particularly in challenging

acoustic scenarios. Among these techniques, source separation and sound enhancement

are central areas of focus.

In real-world environments, such as bustling urban settings or crowded rooms, micro-

phones often capture a mixture of sounds, including speech, ambient noise, and other

non-target signals. Source separation addresses this challenge by disentangling over-

lapping sound sources, isolating the desired signals (e.g., a specific speaker’s voice),

while suppressing irrelevant noise. Sound enhancement further improves the clarity

and quality of these isolated signals, reducing residual noise and improving intelligibil-

ity. Recent advancements have integrated diverse approaches, such as the alteration of

spatial models (e.g., beamforming [1–3]), the use of source models (e.g., independent

vector analysis [4–7], nonnegative matrix factorization [8, 9]), the use of a variational
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Microphone array receives
signal from sound source

Calculate signal
processing’s filter Output the target signal

Spatial covariance matrix
Steering vector

Figure 1.1: A typical array signal processing framework.

autoencoder [10, 11] and hybrid techniques (e.g., independent low-rank matrix analy-

sis [12, 13], multichannel variational autoencoders [14–16]). These methods effectively

suppress artifacts and amplify key sound features, making them indispensable in appli-

cations such as speech recognition, hearing aids, and telecommunications, where high

audio fidelity is crucial.

Despite these advancements, the performance of contemporary array signal process-

ing techniques is heavily based on the assumption of a time-invariant acoustic transfer

system (ATS). As depicted in Figure 1.1, a typical array signal processing framework

involves computing two critical components: the spatial covariance matrix and the

steering vector. The spatial covariance matrix captures the correlation between signals

across microphone array elements, facilitating accurate estimation of incoming signal

directions and enhancing discrimination between sound sources. The steering vector,

on the other hand, aligns spatial filters to the target signal direction, ensuring precise

selectivity. These calculations, however, demand significant computational resources

due to the high dimensionality and complexity of the matrix operations involved.

The ATS—comprising the sound source, microphones, and acoustic transfer func-

tions (ATFs) that define the sound propagation paths—must remain stationary during

processing to ensure the stability and effectiveness of spatial filtering algorithms. Any

variation in the ATS, such as changes in source positions or microphone configurations,
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results in a time-variant ATS, disrupting the spatial information within the array and

between the sound source and microphones. This necessitates the re-estimation of spa-

tial filters to maintain optimal performance. However, re-estimation is computationally

demanding, particularly in real-time scenarios and high-resolution applications. Such

challenges limit the practicality of array signal processing in dynamic environments.

Consequently, addressing the obstacles posed by ATS variations has emerged as a criti-

cal area of research, with the goal of enabling robust, real-time performance in evolving

acoustic settings.

1.2 Thesis Scope

1.2.1 Research Scenario and Previous Work

ATS variation can occur in two primary scenarios: moving sound sources or mov-

ing sensors. Addressing challenges associated with moving sources has been the focus

of numerous research efforts [17], typically involving several methods, such as adap-

tive beamforming [18–21], fusion of audio-visual information [22, 23], source localiza-

tion and tracking [24,25], deep learning and machine learning-based approach [26,27],

and the combination of these methods [28–32]. When the ATS varies due to source

movement, performance degradation can be mitigated through time-block processing.

This approach integrates direction-of-arrival (DOA) information estimated by an auxil-

iary module, tracks multiple sources using these estimates, and subsequently separates

them. However, this method introduces certain limitations. If the block length exceeds

the time frame of the short-time Fourier transform (STFT), it results in a delay propor-

tional to the block length, which hinders its suitability for real-time processing applica-

tions. Additionally, this approach requires the spatial filter to be re-estimated for each
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block where DOA changes occur, adding further computational overhead. To address

these issues, alternative methods have been proposed. For example, Taseska and Ha-

bets [33] introduced an online source separation technique that sequentially estimates

the covariance matrix while incorporating DOA information. This method demon-

strates potential for reducing delays and improving adaptability in dynamic acoustic

environments. Additionally, wavelet-based beamforming [34] is widely applied in sce-

narios involving moving sources, as it effectively mitigates the adverse effects associated

with the time block length in STFT-based beamforming, thereby enhancing real-time

processing performance. Chen et al. [35] proposed a novel wavelet-based beamform-

ing approach specifically designed to address challenges posed by high-speed rotating

sources. Compared to conventional STFT-based beamforming, their method achieves

significant improvements in real-time processing. However, in contrast to STFT-based

beamforming, which does not require prior information about the source, Chen et al.’s

approach relies on such prior knowledge to compensate for the Doppler effect, limiting

its generalizability.

This thesis primarily focuses on scenarios involving moving sensors, an area that

has received limited research attention. Specifically, we examine an auditory system

featuring a circular microphone array (CMA) worn on an interactive robot’s head. For

human-computer interaction in noisy environments, such as social gatherings, robots

are often required to receive sound signals from users while moving. The movement

of a robot can generally be categorized into translational movement and rotational

movement. In this thesis, we focus specifically on rotational movement. Consequently,

the CMA rotates along with the robot’s head, enabling the system to capture audio

signals from the target source while suppressing ambient noise. Our investigation

focuses on this typical scenario of CMA rotation, where the array moves but the sound
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Rotation

Figure 1.2: A situation where the CMA rotates but the sound sources remain stationary.

sources remain stationary. An example of this scenario is illustrated in Figure 1.2.

The rotation of the CMA introduces variability in the ATS, shifting it from a time-

invariant to a time-variant state. This variation necessitates the re-estimation of spatial

filters, a process that, as discussed in Section 1.1, involves computationally demanding

operations. These challenges significantly hinder the feasibility of real-time processing

in dynamic environments, making CMA rotation a critical problem to address for

practical applications.

To address the challenges posed by ATS variability, one proposed strategy is the

“stop–perceive–act” principle [36], which involves halting movement temporarily to

stabilize the ATS and facilitate accurate signal processing. This approach aims to

approximate a time-invariant ATS, simplifying the application of array signal process-

ing techniques. However, this method is impractical in real-world scenarios, as robot

movement is typically continuous. Such constraints may disrupt natural interactions

with the environment and prevent the microphone array from capturing new signals

during motion. If movement is relatively slow, the time-variant ATS can be approx-

imated as time-invariant, allowing the “stop–perceive–act” principle to be fulfilled.
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While this approximation can yield some effectiveness, it remains vulnerable to per-

formance degradation, similar to the limitations of time-block processing. Continuous

movement, even at a slow pace, perpetuates ATS variability, requiring spatial filters to

be updated in real time to maintain optimal performance. Thus, slow movement still

poses significant challenges to real-time processing in dynamic environments.

Tourbabin and Rafaely [37] proposed a novel technique for DOA estimation tailored

to microphone arrays mounted on moving humanoid robots. This approach compen-

sates for the robot’s motion using a motion compensation matrix in the spherical har-

monic domain and constructs the rotation matrix with the Wigner-D matrix [38, 39].

In a related study, Ma et al. [40] explored two methods for estimating sound signals at

virtual rotating array (VRA) microphones: the cross-spectral matrix based on modal

decomposition (CSM-MD) and the cross-spectral matrix based on linear interpola-

tion (CSM-LI). The CSM-MD method employs Fourier interpolation to process sound

pressures recorded by all real microphones, whereas the CSM-LI method uses linear

interpolation between two neighboring microphones in the time domain. Addition-

ally, Casebeer et al. [41] introduced a learning-based approach using a recurrent neural

network (RNN) to estimate time-varying spatial covariance matrices. This method

specifically addresses the challenges posed by rapid pose changes in wearable devices,

demonstrating its potential for handling dynamic scenarios effectively.

To address the challenges of online processing with moving sensors, Wakabayashi

et al. proposed an innovative beamforming framework [42, 43] to mitigate the ef-

fects of CMA rotation. This technique employs sound field interpolation (SFI), based

on the theorem of non-integer sample shifts, leveraging the periodicity of the sound

field around the CMA’s circumference and the relationship between array perception

and sound field discretization. When the CMA rotates to a new position, the newly
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recorded sound signals at that position are used to perform SFI to estimate what the

signals would have been at the original position before rotation. This process allows

the rotated CMA to be treated as fixed, eliminating the need for filter updates. The

previously computed beamformer filters can then be directly applied regardless of the

array’s rotation, significantly simplifying processing. The SFI method has shown poten-

tial for wide-ranging applications and serves as a foundation for developing derivative

algorithms. For example, Nakashima et al. [44] applied SFI to propose an online-

independent vector analysis method that remains robust against CMA self-rotation.

Similarly, Lian et al. [45] utilized SFI for precise self-rotation angle estimation of CMAs.

While SFI shares similarities with the CSM-MD method in [40], as both employ linear

interpolation in the Fourier domain for all microphones, Wakabayashi et al. introduced

a clearer matrix-form analytical expression for interpolation, enhancing its usability

and analytical rigor.

1.2.2 Research Question

It is crucial to recognize that both SFI and CSM-MD methods rely on the assump-

tion of an equally spaced CMA (es-CMA) to effectively capture and interpret the sound

field, owing to utilizing the periodicity of sound pressure around the array’s circum-

ference. Any angular deviation from these equally spaced positions can significantly

degrade the performance of these methods, as they rely on the uniformity of the array

for reliable sound field estimation. In practical applications, achieving a perfectly uni-

form distribution of microphones on a CMA is often impractical and unnecessary due to

the limitations of design, user behavior, and physical constraints. Here, this thesis uses

the term ‘distribution’ to refer to the spatial arrangement of microphones in an array.

Consequently, in many real-world scenarios, an unequally spaced CMA (unes-CMA)—
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characterized by irregular angular intervals between adjacent microphones—is more

commonly used, which introduces notable implementation challenges. The CSM-LI

method offers an advantage in that it can be applied to unes-CMAs by using linear

interpolation between only two adjacent microphones in the time domain. However,

this method has lower spectral reconstruction capabilities [40] compared to SFI and

CSM-MD, resulting in suboptimal source enhancement performance. This gap in per-

formance underscores the need to develop more robust techniques for estimating sound

signals on unes-CMAs. To that end, the first research question we seek to address

is: How can the signal prior to rotation be accurately estimated on an

unes-CMA to eliminate the effects of rotation?

To answer this question, a critical consideration is whether the distribution of micro-

phones on the unes-CMA is known in advance. If prior knowledge of the microphone

distribution is available, it would simplify the task of compensating for the rotation.

However, to avoid imposing additional constraints and to enhance the robustness, it is

desirable to eliminate the need for any prior information. Therefore, we consider the

scenario in which the specific distribution of the microphones is unknown―–a situa-

tion that aligns well with practical applications, where irregular microphone placement

often results in uncertainty about their exact positions. This leads us to the second

research question: How can the array signal prior to rotation be estimated

when the microphone distribution on the unes-CMA is unknown?

Moreover, while we have discussed the unes-CMA in the context of a circular array,

it is important to consider that the robot head is not a perfect sphere. As a result,

a microphone array worn on the head may not maintain a strictly circular shape, but

instead form a NCMA, where the microphones are positioned in irregular patterns, just

as Figure 1.3 shows. These variations in shape and microphone placement introduce
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Figure 1.3: Examples of an NCMA on an interactive robot’s head.

further complexity in signal estimation and beamforming processes. This leads to our

third research question: How can the signal before rotation be estimated on

an NCMA, where the array shape deviates from a perfect circle?

These research questions address the core challenges of designing robust array signal

processing techniques for dynamic, wearable systems where CMA rotation, irregular

microphone distribution, and nearly-circular array shapes must be accounted for. By

investigating these problems, we aim to develop methods that can provide accurate,

real-time signal processing in a range of practical applications, from hearing aids to

advanced robotics.
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1.3 Thesis Overview

This thesis aims to address the three key challenges outlined in Section 1.2. These

challenges encompass the accurate estimation of signals on an unes-CMA, the develop-

ment of methods to handle unknown microphone distributions, and the adaptation of

techniques to accommodate NCMAs. Each of these problems presents unique obstacles

to achieving robust and efficient sound field processing on a wearable hearing augmen-

tation system. Figure 1.4 provides an overview of the thesis’s scope, illustrating the

interconnections between these challenges and the proposed solutions.

Chapter 2 lays the foundation for this thesis by presenting the fundamentals of

beamforming and SFI. The primary objective of this thesis is to propose a novel

preprocessing method for array signal processing that effectively mitigates the effects

of CMA rotation, eliminating the need for re-estimating the spatial filter, a process that

is computationally intensive and challenging in dynamic environments. To achieve this

goal, a comprehensive understanding of mainstream array signal processing is crucial, as

it serves as the baseline for the proposed enhancements. In this thesis, beamforming is

taken as a representative example of the mainstream array signal processing techniques.

Additionally, because the methods introduced in this thesis build upon the principles

of SFI, a detailed and systematic overview of SFI will also be provided in this chapter.

This foundational knowledge is critical for understanding the proposed advancements.

To address the first problem outlined in Section 1.2, Chapter 1.2 introduces an en-

hanced method called unequally spaced SFI (unes-SFI) to effectively manage the rota-

tion challenges associated with an unes-CMA. In this framework, it is assumed that the

microphone distribution on the unes-CMA is known beforehand. The proposed method

begins by compensating for the non-uniform microphone distribution to standardize

the array configuration before addressing variations in the ATS. Using the signals cap-
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tured by the unes-CMA, the method estimates the hypothetical sound signals that

would have been recorded if the microphones were positioned at their corresponding

equally spaced locations. By doing so, the unes-CMA is conceptually transformed into

a virtual es-CMA. This transformation simplifies the complex rotation issue of the

unes-CMA into the more manageable rotation problem of an es-CMA, for which so-

lutions have been previously established in [42, 43]. By leveraging the sound signals

from the virtual es-CMA prior to rotation, unes-SFI generates the sound signals that

would have been recorded by the actual unes-CMA before rotation. As a result, the

time-variant ATS of the unes-CMA is successfully converted into a time-invariant ATS

of an es-CMA, laying a strong foundation for robust signal processing while preserving

computational efficiency.

To address the second problem outlined in Section 1.2, Chapter 4 presents a fur-

ther enhanced rotation-robust beamforming method called generalized sound field in-

terpolation (GSFI). Unlike the unes-SFI method introduced in Chapter 3, which re-

quires prior knowledge of each microphone’s angular displacement from its ideal equally

spaced position to estimate the hypothetical sound signals on a virtual es-CMA and

compensate for the non-uniform distribution, GSFI is designed to work with freely

distributed unes-CMAs even when such prior information is unavailable. GSFI incor-

porates an unsupervised calibration method to estimate the positions of microphones

on the unes-CMA through an iterative optimization process without any pre-existing

location data. Crucially, this calibration process relies exclusively on the multichannel

signals captured by the array and needs to be performed only once. Once the micro-

phone positions are calibrated, the problem reduces to a form that can be addressed

using the unes-SFI framework presented in Chapter 3. By providing calibrated posi-

tions, the unsupervised calibration ensures that unes-SFI can effectively compensate
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for the non-uniform microphone distribution. Thus, GSFI is realized by combining

unsupervised calibration with unes-SFI. This combination enables GSFI to function as

a robust preprocessing step before applying beamforming, offering a robust solution to

the challenges posed by unknown microphone distributions.

To address the third problem identified in Section 1.2, Chapter 5 extends the appli-

cability of GSFI to handle NCMAs, which deviate from the standard circular geometry,

and presents a reliable framework for signal estimation in such scenarios. The method

begins by radially repositioning the microphones on the NCMA onto a common circle

to form a pCMA. Through unsupervised calibration using the NCMA’s signal, the dis-

tribution of microphones on the pCMA is determined to ensure that its received signal

closely approximate that of the original NCMA. The pCMA then serves as a proxy for

the NCMA, reducing the complexity of processing signals from the NCMA by lever-

aging the simpler circular geometry of the pCMA. The goal is to estimate the NCMA

signal before rotation using the signal recorded after rotation. However, since rotation

alters the correspondence between the pCMA and NCMA, a single pCMA cannot reli-

ably represent the NCMA for both states. Each rotation angle of the NCMA produces

a unique distribution of microphones on the pCMA. To address this, the framework

employs a two-stage approach. The before-rotation and after-rotation states are treated

as distinct stages, with separate pCMAs representing the NCMA in each stage. The

method establishes correspondence between the two pCMAs and leverages the after-

rotation NCMA signal to estimate the before-rotation signal. This extended framework

enhances GSFI by making it adaptable to NCMAs, thereby broadening its utility to

scenarios involving head-wearable arrays that deviate from strict circular geometries.

Table 1.1 provides a comparative summary of the SFI method introduced in Chap-

ter 2 alongside the novel methods proposed in Chapters 3 to 5, elucidating the relation-
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Table 1.1: Comparative summary of the different interpolation methods.

Interpolation Methods

Requirements Sound Field Interpolation
Unequally Spaced

Sound Field Interpolation

Generalized

Sound Field Interpolation

Two-stage Generalized

Sound Field Interpolation

Time-invariant

Acoustic Transfer System
Unnecessary Unnecessary Unnecessary Unnecessary

Uniformly Distributed

Microphones along the Circle
Necessary Unnecessary Unnecessary Unnecessary

Known Distribution of

Microphones
Necessary Necessary Unnecessary Unnecessary

All Microphones Positioned

on the Same Circle
Necessary Necessary Necessary Unnecessary

ships and advancements made throughout this thesis. This structured comparison high-

lights the progressive refinement and expansion of the methodologies, showcasing how

each method systematically addresses and removes key assumptions and constraints.

This progression reflects a deliberate strategy to enhance the robustness and versatility

of the proposed approaches, ultimately enabling their application to increasingly com-

plex and realistic scenarios. By incrementally building upon the foundational concepts

introduced in Chapter 2, the thesis demonstrates a cohesive and systematic evolution

of techniques to address challenges associated with CMA’s rotation, unes-CMAs, and

NCMAs.

Finally, Chapter 6 concludes the thesis by summarizing the key findings, contribu-

tions, and implications of the thesis. This chapter also discusses the limitations of

the proposed methods and suggests potential directions for future work, highlighting

opportunities for further improving the robustness and applicability of the techniques

developed in this thesis.
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MPDR Beamforming

How to aviod re-estimating the spatial filter after the
CMA rotates?

How can the signal before rotation be accurately
estimated on an unes-CMA?

How can the array signal before rotation be estimated
when the microphone distribution is unknown?

Sound Field Interpolation

How can the signal before rotation be estimated on an
NCMA where the array shape is not a perfect circle?

Chapter 3:
Unequally Spaced Sound

Field Interpolation

Chapter 4:
Generalized Sound Field

Interpolation

Chapter 5:
Two-stage Generalized

Sound Field Interpolation

Chapter 6:
Conclusion

Require a time-invariant ATS

Require an es-CMA

Require a known microphone
distribution

Require a circular array

Chapter 1 & 2

Challenges to be resolvedThesis Content

Figure 1.4: Thesis’s scope.



2 Background and related Work

This chapter introduces the foundational principles of beamforming and sound field

interpolation (SFI), which are closely related to the research presented in this thesis.

2.1 Introduction

As highlighted in Chapter 1, the primary objective of this thesis is to develop a

method that enhances the robustness of microphone array signal processing against

rotational movements, thereby eliminating the need to re-estimate spatial filters caused

by such motion. Achieving this objective is critical for enabling real-time processing

in practical applications. Although there are various types of microphone array signal

processing, such as sound source localization and acoustic echo cancellation, this thesis

focuses exclusively on beamforming. Beamforming is used as a representative example

among microphone array signal processing methods to explore how rotation-robust

beamforming can be achieved. Thus, an understanding of beamforming fundamentals

is essential, as this forms the foundation of the research presented in this thesis.

Wakabayashi et al. previously introduced a novel framework leveraging SFI for mi-

crophone array signal processing robust to the rotation of a circular microphone array

(CMA). This framework was evaluated in beamforming applications. Based on the

sampling theorem on the circle, SFI enables the estimation of microphone signals at

their original positions prior to rotation, allowing conventional array signal processing



16 2 Background and related Work

methods to operate without re-estimation. However, this framework assumes the use

of an equally spaced CMA (es-CMA) to ensure the discretized sound field exhibits peri-

odicity. The methods developed in this thesis build upon the SFI concept, introducing

unequally spaced SFI (unes-SFI) and generalized SFI (GSFI). These extensions gener-

alize interpolation techniques to accommodate unequally spaced circular microphone

arrays (unes-CMAs) and nearly-circular microphone arrays (NCMAs), addressing more

complex and practical scenarios. Consequently, a thorough understanding of SFI prin-

ciples is vital for appreciating the contributions of this thesis.

This chapter is structured as follows: Section 2.2 introduces the widely used Mini-

mum Power Distortionless Response (MPDR) beamforming framework [46–54], provid-

ing essential context for understanding the integration of beamforming into rotation-

robust processing. Section 2.3 delves into prior work on SFI, laying the foundation for

the advanced methods proposed in subsequent chapters.

2.2 Minimum power distortionless response beam-

forming

Beamforming is a signal processing technique used to enhance the desired signal

while suppressing interference by steering the mainlobe of the array’s response toward

the target direction. Among various beamforming methods, the MPDR algorithm is

a widely adopted approach. MPDR minimizes interference and noise by adjusting the

spatial filter to achieve the minimum output power, ensuring an undistorted response

in the desired direction. This section provides an introduction to the signal model

used in beamforming, which serves as the basis for spatial filtering. It then details the

formulation of the MPDR beamforming algorithm.
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Figure 2.1: Array with plane-wave input.

2.2.1 Beamforming signal model

We consider the response of a microphone array to a plane wave propagating in the

direction of the unit vector a ∈ R3×1, characterized by a temporal (radian) frequency

ω, in a noise-free environment. The array comprises N isotropic sensors positioned at

positions Pn ∈ R3×1, where n = 0, 1, ..., N −1, as depicted in Figure 2.1. These sensors

act as spatial samplers of the signal field, capturing the wavefront at their respective

locations Pn. The resulting set of sampled signals is represented collectively by the
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vector

f(t,P ) =


f(t,P0)

f(t,P1)

...

f(t,PN−1)


. (2.1)

Alternatively, the time-domain representation in (2.1) can be transformed into the

frequency domain as

F (ω,P ) =

∫ ∞

−∞
f(t,P )e−jωt dt, (2.2)

In most cases, the explicit dependence on P on the left-hand side of (2.2) is omitted

for simplicity, and the frequency domain representation is denoted as F (ω) ∈ CN×1.

Considering the case shown in Figure 2.1, we illustrate a simple beamforming oper-

ation by expressing the time-domain signals received by the sensors in a manner that

highlights the time delays associated with the signal’s time of arrival at each sensor. Let

the signal that would be received at the origin of the coordinate system in Figure 2.1

be f(t), then (2.1) can be written as

f(t,P ) =


f(t− τ0)

f(t− τ1)

...

f(t− τN−1)


, (2.3)

where

τn =
aTPn

c
, (2.4)
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and c is the velocity of propagation in the medium. From (2.3), the nth component of

F (ω) can be calculated using the time-shifting property of Fourier transform

Fn(ω) =

∫ ∞

−∞
f(t− τn)e

−jωt dt = F (ω)e−jωτn . (2.5)

F (ω) represents the Fourier transform of f(t), which is the signal expressed in the

frequency domain, and

ωτn =
ω

c
aTPn =

2π

λ
aTPn, (2.6)

where λ is the wavelength associated with the frequency ω. Defining

v(a) =


e−j2πaTP0/λ

e−j2πaTP1/λ

...

e−j2πaTPN−1/λ


, (2.7)

according to (2.5), we can write F (ω) as

F (ω) = F (ω)v(a). (2.8)

The vector v(a) encapsulates the spatial characteristics of the microphone array, in-

cluding the positions of the sensors and their relative orientation with respect to the

incoming wavefront. Its role is central to both formulating and implementing beam-

forming algorithms.
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F(ω)
W H(ω)

Y(ω)

Figure 2.2: Matrix operation in MPDR.

2.2.2 Formulation of MPDR beamforming

In this subsection, we focus on the scenario involving a single plane-wave signal. The

frequency-domain representation of the array signal, F (ω), includes two components:

the received source signal Fs(ω) ∈ CN×1 and an additive noise component N (ω) ∈

CN×1. Mathematically, the array signal can be expressed as

F (ω) = Fs(ω) +N (ω), (2.9)

The source signal filtered by the array, Fs(ω), can be written as

Fs(ω) = Fs(ω)v(a), (2.10)

which is identical to (2.8). Here, Fs(ω) represents the single source signal input to the

array in the frequency domain. The parameter a specifies the direction from which the

single plane wave arrives. The term v(a) is referred to as the steering vector associated

with the direction a.

In MPDR, the goal is to isolate the desired source signal Fs(ω) while minimizing the

impact of the noise N (ω). To achieve this, the observed array signal F (ω) is processed

using a spatial filter represented by the matrix operation W H(ω) ∈ C1×N , as depicted
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in Figure 2.2,

Y (ω) = W H(ω)F (ω) = W H(ω)v(a)Fs(ω) +W H(ω)N (ω), (2.11)

where H denotes the Hermitian transpose. The spatial filter W (ω) combines the out-

puts of the individual sensors, weighted appropriately, to form a scalar output signal.

A key principle guiding MPDR beamforming is the distortionless criterion, which

ensures that the desired signal remains unaffected in amplitude and phase after pro-

cessing. It is required that, in the absence of noise,

Y (ω) = Fs(ω), (2.12)

for any Fs(ω). This constraint of no distortion implies

W H(ω)v(a) = 1. (2.13)

The distortionless criterion guarantees that the system maintains a gain of 1 for the

desired direction while suppressing unwanted noise and interference from other direc-

tions. This balance between signal preservation and noise minimization is central to

the MPDR approach, enabling effective beamforming in noisy environments.

The choice of W (ω) is critical in MPDR. Under the distortionless criterion, W (ω) is

designed to achieve a distortionless response in the desired direction while minimizing

the total power of the output signal Y (ω), which includes contributions from noise and

interference. In other words, we wish to minimize the mean square of Y (ω), which is

E
[∣∣Y (ω)2

∣∣] = W H(ω)S(ω)W (ω), (2.14)

where S(ω) = E
[
F (ω)F (ω)H

]
is the spatial covariance matrix of F (ω). We aim to
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minimize E [|Y (ω)2|] while ensuring that the distortionless criterion (2.13) is satisfied

[55,56].

The solution to this constrained optimization problem is derived using the method

of Lagrange multipliers. The objective function that we minimize is

F def
= W H(ω)S(ω)W (ω)+λ(ω)

[
W H(ω)v(a)− 1

]
+λ∗(ω)

[
vH(a)W (ω)− 1

]
. (2.15)

We take the complex gradient with respect to W H(ω) and solve for the optimal weights

W H(ω) = −λ(ω)vH(a)S−1(ω). (2.16)

To determine the value of λ(ω), we apply the constraint in (2.13), which gives the

following form

λ(ω) = −
[
vH(a)S−1(ω)v(a)

]−1
. (2.17)

As a result, W (ω) is given by

W H(ω) =
vH(a)S−1(ω)

vH(a)S−1(ω)v(a)
. (2.18)

The matrix processor in (2.18) is referred to as the MPDR beamforming spatial filter.

For notational simplicity, it is convenient to suppress the frequency ω and the direction

a, resulting in the following expression for the MPDR beamforming spatial filter

W H =
vHS−1

vHS−1v
. (2.19)

As seen in (2.19), the spatial covariance matrix S and the steering vector v are critical

for the calculation of the beamforming filter W .
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When the microphone array undergoes rotation, the spatial information changes,

necessitating the recalculation of S and v to derive a new beamforming filter. However,

the computation of S and v involves significant computational complexity, making it

unsuitable for real-time processing applications. Therefore, it is essential to develop

methods that avoid recalculating W , which would improve the processing speed of the

beamforming processing.

2.3 Sound field interpolation (SFI)

In this section, we review previous research on SFI [42,43] for addressing time-variant

ATS utilizing an es-CMA. The discussion begins with the derivation process of the

SFI technique, providing the theoretical foundation for its operation. Following this,

we present a concise analysis of the singularity inherent in the rotation transformation

matrix, a key component in modeling the rotation of the es-CMA. This matrix is crit-

ical for accurately generating the sound signals corresponding to their before-rotation

positions. Finally, we illustrate the application of SFI to beamforming as an example,

illustrating its utility in multichannel signal processing through both batch and online

methodologies.

2.3.1 Formulation

It is important to emphasize that this earlier research has primarily focused on

eliminating the need to update the spatial filter when the CMA undergoes rotation.

Consequently, the spatial filter, represented byW in (2.11) and (2.19), is predetermined

and remains constant throughout the process. By estimating the signal before rotation

from the after-rotation observations, this method allows the direct application of the
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Figure 2.3: Continuous sound field on a circle’s circumference and the discretized sound

field function with a δ sample shift.

pre-existing spatial filter W , thereby avoiding the computationally intensive process

of re-estimation.

We consider a continuous sound field function x(θ) in the time–frequency domain,

observed after the CMA undergoes a rotation of−∆ radians, as illustrated in Figure 2.3.

The function x(θ) can be generally expressed as a sum of sinusoidal and cosinusoidal

components using a Fourier series representation. Importantly, this function exhibits

periodicity with a period of 2π, wherein θ ∈ [0, 2π) represents the angular position on

the circle.

When an es-CMA is employed to capture the sound field, the continuous sound field

function x(θ) is discretized by sampling it at discrete angular positions corresponding

to the locations of the microphones. To preserve the periodicity of the discretized

sound field, the microphones must be positioned at equidistant intervals along the

circumference of the array. For an M -channel es-CMA, the interval between adjacent
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microphones is 2π/M , and the observed signal at the mth microphone is expressed as:

xm = x
(
2π

m

M

)
, m = 0, ...,M − 1, (2.20)

where xm represents the signal observed at the mth microphone after the rotation of

the CMA.

It is important to note that a key advantage of this approach is its independence

from any specific assumptions about the signal model. The observed signals xm can

represent any type of sound field in any acoustic environment, making the framework

broadly applicable across diverse scenarios.

Assuming that the sampling theorem [57] holds, the continuous sound field function

x(θ) can be reliably reconstructed from the discretized sound signal xm. This capability

underpins the feasibility of SFI, which leverages the non-integer sample shift theorem in

the Fourier domain to achieve accurate reconstruction and manipulation of sound field.

Specifically, the sound field before rotation, denoted by a discretized ∆-rad-rotated

sound field function x(2πm/M+∆), aligns consistently with the δ-sample-shifted sound

signal xm+δ observed using an es-CMA. Mathematically, this relationship is expressed

as:

xm+δ = x

(
2πm

M
+∆

)
, (2.21)

where the shift δ is given by

δ =
M∆

2π
. (2.22)

Using the non-integer sample shift theorem in the discrete Fourier transform (DFT)

[58, 59], the shifted signal xm+δ can be reconstructed in terms of the original discrete
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sound signal x0, x1, . . . , xM−1. This reconstruction is expressed as:

xm+δ =
1

M

M/2∑
k=−M/2+1

(
FD [xm] e

j∆k
)
ej

2πmk
M , (2.23)

or equivalently:

xm+δ =
M−1∑
n=0

xnUm,n,δ, (2.24)

where FD [xm] represents the DFT of the discrete signal xm. Um,n,δ is the interpolation

coefficient of SFI, which is computed by applying the sinc function, as demonstrated

below:

Um,n,δ =



1−ejLπ

M
+

sinc(L
2 )cos(

M+2
2M

Lπ)
sinc( L

M )
, M is even1

1
M

+ M−1
M

sinc(L(M−1)
2M )cos(M+1

2M
Lπ)

sinc( L
M )

, M is odd,

(2.25)

where L = n−m− δ and j =
√
−1. According to Euler’s formula, (2.25) in the case

of an even M can also be written as

Re (Um,n,δ) =
1− cosLπ

M
+

sinc
(
L
2

)
cos
(
M+2
2M

Lπ
)

sinc
(

L
M

) , (2.26)

Im (Um,n,δ) = −
jsinLπ

M
. (2.27)

1Compared to the formulation of Um,n,δ in [42], we have made slight modifications specifically for
cases where M is even. In [43], the corrected formulation has been adopted.
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In matrix representation, the SFI formulation (2.24) can also be defined as

x(∆) =
[
x0+δ · · · xM−1+δ

]T

=


U0,0,δ · · · U0,M−1,δ

...
. . .

...

UM−1,0,δ · · · UM−1,M−1,δ




x0

...

xM−1


= UM(∆)x, (2.28)

where UM(∆) is the rotation transform matrix, and x =
[
x0 · · · xM−1

]T
is the

multichannel signal of the CMA after rotating −∆ rads in the time–frequency domain

and is equal to x(0). Significantly, while all formulations are delineated within the

confines of the time–frequency domain, it is noteworthy that this interpolation method

in [42, 43] is not domain-restricted. In other words, even if the signal pertains to

the time-domain, this interpolation technique remains applicable. It should also be

emphasized that UM(∆) takes the form of a cyclic matrix and remains independent of

the frequency of the observed signal.

2.3.2 Analysis of rotation transform matrix

Given that our proposed methods in the following chapters rely on the application of

the inverse matrix of the rotation transform matrix UM(∆), it is essential to examine

the properties of its inverse matrix. For clarity in the subsequent discussion, we define

the es-CMA’s position before rotation as the “reference position”.

If an es-CMA undergoes an initial rotation by ∆ rads, followed by a subsequent

rotation by −∆ rads, it will return to its reference position. This relationship implies

that the inverse of the rotation transform matrix, UM(∆)−1, is equivalent to UM(−∆).
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Moreover, as established in [43], UM(∆) is a unitary matrix.

In (2.25), when the number of microphones, M , is even, specific challenges arise

due to the Nyqf component. In such cases, the numerator of the first term in (2.25)

in the case of an even M , ejLπ = (−1)n−m e−jδπ, represents the Nyqf component.

This component demands careful handling to ensure accurate signal reconstruction

and interpolation. In a previous paper [43], three distinct approaches were proposed

to address this issue:

• Complex Nyqf (CoN): The Nyqf component is used in its complete complex form,

retaining all phase and magnitude information.

• Real Nyqf (ReN): Only the real part of the Nyqf component is considered, sim-

plifying the representation.

• Zero Phase Nyqf (ZPN): A zero value is substituted for δ exclusively in the Nyqf

component, effectively neutralizing its phase shift.

In the subsequent part of this subsection, we focus on the scenario where M is even.

This restriction allows us to explore the impact of the Nyqf component on the rotation

matrix. By analyzing (2.26), (2.27), and leveraging the commutative property of matrix

multiplication, we observe that in the absence of the imaginary part (2.27), the product

UM(∆) ·UM(−∆) does not equal the identity matrix under the ReN and ZPN. As a

result, the es-CMA fails to return to its original position after an initial rotation of ∆

rads followed by a subsequent rotation of −∆ rads. Additionally, the unitary property

of the matrix is no longer preserved in these approaches, suggesting that both ReN

and ZPN encounter limitations or inconsistencies when handling the Nyqf component.

These findings indicate that while ReN and ZPN may provide practical simplifications

when handling the Nyqf component, they introduce certain inaccuracies or deviations
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that need to be carefully considered.

Essentially, the inverse matrix of UM(∆) always exists, except in the exceptional

case encountered with ReN. Returning to the initial stages of the derivation for SFI,

according to [43], (2.23) can be simplified as

xm+δ = F−1
D

(
FD [xm] e

j∆k
)
. (2.29)

By substituting the Fourier transform FD with the DFT matrix F , we can translate

(2.29) into the matrix representation

x(∆) = F−1E (∆)Fx(0), (2.30)

where

F =
1√
M


e−j 2π

M
·0·0 · · · e−j 2π

M
·0·(M−1)

...
. . .

...

e−j 2π
M

·(M−1)·0 · · · e−j 2π
M

·(M−1)·(M−1)

 , (2.31)

and

E (∆) = diag
(
ej∆⌈1−M/2⌉, ..., ej∆⌈M/2⌉) (2.32)

is a diagonal matrix of phase rotation for the δ-sample shift, where ⌈•⌉ indicates the

ceiling function.

The specific case where ∆ is equal to π/M results in the last element in E (∆)

being ejπ/2. In ReN, where the imaginary part is neglected, the phase rotation matrix
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EReN (π/M) can be calculated as

EReN

( π

M

)
= diag

(
cos

(
(1−M)π

2M

)
, ..., 0

)
, (2.33)

which is a singular matrix. Therefore, in the ReN case, the rotation transform ma-

trix UM (π/M) = F−1EReN (π/M)F does not have a corresponding inverse matrix.

Specifically, when ∆ is equal to π/M , the inverse matrix of UM(∆) does not exist. This

unusual situation requires further examination, and will be discussed in the following

chapter.

2.3.3 MPDR beamforming with sound field interpolation

To apply SFI to the MPDR beamforming, we first assume the following conditions:

• The steering vector of the target sound source observed by anM -channel es-CMA

at the reference position, denoted as vf , is given, where f indicates the frequency

bin index. It is commonly assumed that the steering vector is either obtained or

pre-estimated in advance for beamforming applications [3, 60,61].

• The rotation angle for each time frame, θt, is provided, where t indicates the time

frame index. The rotation angle can be readily obtained through various methods,

such as using an acceleration sensor or through other estimation methods [45,62,

63].

Under these conditions, we will introduce two approaches for applying SFI to beam-

forming. One approach involves the use of a pre-estimated spatial filter, while the

other focuses on online spatial filtering. In the following discussions, we refer to the

observation made by the es-CMA at the reference position, without any rotation, as
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the “reference observation”. We assume that at the start time, the es-CMA is located

at the reference position.

Batch processing with a pre-estimated spatial filter

In this process, we use a fixed MPDR beamforming spatial filter Wf , which is pre-

estimated using (2.19) in advance. As mentioned earlier, the steering vector vf is also

obtained, so the only remaining requirement for calculating the spatial filter is the

estimation of the covariance matrix. To achieve this, we need the reference observation

over a sufficiently long time period to estimate the covariance matrix Sf , assuming

that neither the sound sources nor the CMA move during these time frames.

After the es-CMA rotates by θt rads, the reference observation is reconstructed before

beamforming using (2.28), as follows

x̂ref,tf = UM(−θt)xtf , (2.34)

which implies that by performing interpolation along the inverse rotation, we effectively

restore the rotated es-CMA to its reference position. With the es-CMA virtually re-

turned to the reference position, the spatial information can be considered unchanged,

eliminating the need to re-estimate the covariance matrix Sf and the steering vector

vf . Consequently, the target source can be directly enhanced using the pre-estimated

filter Wf and the estimated reference observation, just as in conventional beamforming

ytf = W H
f x̂ref,tf . (2.35)
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Online Processing of Spatial Filter

While the batch processing approach outlined in Section 2.3.3 is effective when the

ATS remains stationary aside from es-CMA rotation, this condition is rarely met in

real-world scenarios. To address situations where the ATS undergoes minor varia-

tions in addition to es-CMA rotation, this subsection introduces an updated online

processing algorithm incorporating SFI for beamforming. In this approach, a well-

known smoothing (forgetting) factor α [64, 65] is employed to update the covariance

matrix in real time. In addition, a matrix inversion lemma, the Sherman–Morrison

formula [66–68], which can reduce the complexity of calculating the covariance matrix

inversion that appears in the MPDR beamforming formulation, is utilized, making it

more efficient for online processing applications.

Firstly, we estimate the reference observation by (2.34), as in the batch processing.

By using the interpolated observation, we can estimate the covariance matrix at the

t-th frame, Ŝtf , based on the covariance matrix from the previous frame, Ŝ(t−1)f , and

the smoothing factor α, as follows:

Ŝtf = αŜ(t−1)f + (1− α)x̂ref,tf x̂
H
ref,tf . (2.36)

This formulation, incorporating the smoothing factor α, is commonly used in online

signal processing studies to adapt the covariance matrix over time [65,69]. Additionally,

the Sherman–Morrison formula is utilized to efficiently compute the inverse of Ŝtf with

reduced complexity, facilitating its application in MPDR beamforming (2.19) for each
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time frame. The inverse of Ŝtf is calculated as follows

Ŝ−1
tf =

1

α
Ŝ−1

(t−1)f −

(
αŜ(t−1)f

)−1

x̂ref,tf x̂H
ref,tf

(
αŜ(t−1)f

)−1

1
1−α

+ x̂H
ref,tf

(
αŜ(t−1)f

)−1

x̂ref,tf

=
1

α
Ŝ−1

(t−1)f −
Ŝ−1

(t−1)f x̂ref,tf x̂H
ref,tf Ŝ−1

(t−1)f

α2

1−α
+ α x̂H

ref,tf Ŝ−1
(t−1)f x̂ref,tf

, (2.37)

which is then employed to update the spatial filter, enabling online enhancement of

the target source.

Algorithm 1: Online beamforming update algorithm with SFI

input : xtf ∈ CM×1, vf ∈ CM×1, θt ∈ R

output: ytf

1 for f ← 0 to F − 1 do

2 initialize Ŝ−1
f

3 for f ← 0 to F − 1 do

4 x̂ref,tf ← UM(−θt)xtf

5 Ŝ−1
tf ←

1

α
Ŝ−1

(t−1)f −
Ŝ−1

(t−1)f x̂ref,tf x̂H
ref,tf Ŝ−1

(t−1)f

α2

1−α
+ α x̂H

ref,tf Ŝ−1
(t−1)f x̂ref,tf

6 W H
tf ←

vH
f S

−1
tf

vH
f S

−1
tf vf

7 ytf ←W H
tf x̂ref,tf

Algorithm 1 provides a detailed pseudo-code representation of the frame-wise online

processing methodology, incorporating all essential formulations. This algorithm lever-

ages the interpolated reference observation, smoothing factor, and efficient covariance

matrix inversion using the Sherman–Morrison formula to adaptively enhance the target

source.
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It is important to emphasize the initialization of Ŝ−1
tf , which plays a crucial role in

ensuring the stability and convergence of the online algorithm. Various initialization

strategies are available, including:

• Random Matrix: Assigning random values to Ŝ−1
tf , which introduces variability

but may lead to unpredictable behavior in early frames.

• Identity Matrix: Setting Ŝ−1
tf to the identity matrix, offering a neutral starting

point and simplifying initial calculations.

• Averaged Inversion: Computing Ŝ−1
tf as the inverse of xtfx

H
tf averaged over

a predefined number of initial time frames. This approach incorporates prior

observations, potentially improving initialization accuracy.

The choice of initialization method should be informed by the specific requirements of

the application and the characteristics of the observed data. For instance, in environ-

ments with significant variability or noise, averaging over several frames may provide

a more robust starting point. Conversely, for applications prioritizing computational

simplicity, using the identity matrix might be preferable. Careful consideration and

testing of the initialization strategy are essential to ensure optimal performance of the

online processing framework.

2.4 Summary

This chapter has provided the foundational knowledge essential for understanding

the concepts and methodologies presented in this thesis. Section 2.2 introduced the

principles and implementation of MPDR beamforming, laying the groundwork for its

application in sound field processing. Section 2.3 reviewed the SFI method, which is
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integral to achieving rotation-robust beamforming with an es-CMA. Furthermore, we

conducted an in-depth analysis of key SFI properties, including its singularity behav-

ior, and demonstrated its practical application in both batch and online beamforming

scenarios. The discussions and analyses in this chapter are intrinsically linked to the

methods proposed later in this thesis. These foundational insights will be frequently

referenced in subsequent chapters, serving as a basis for the proposed contributions. It

is our intent that this chapter equips readers with a preliminary understanding of the

research framework, thereby enhancing their comprehension of the advanced concepts

and techniques presented in the following chapters.





3 Unequally Spaced Sound Field

Interpolation

This chapter introduces an advanced method, named unequally spaced sound field

interpolation (unes-SFI), specifically designed to enable rotation-robust beamforming

with unequally spaced circular microphone arrays (unes-CMAs). The unes-SFI tech-

nique builds upon a modified sound field interpolation (SFI) framework to address the

challenges posed by positional deviations of microphones in an unes-CMA. It estimates

virtual after-rotation signals at equally spaced positions, compensating for microphone

placement errors. The method leverages the previous SFI approach as an interme-

diate step to derive before-rotation equally spaced signals at the reference position.

Subsequently, unes-SFI reconstructs the target before-rotation signal of the unes-CMA

at its reference position, effectively enabling robust beamforming despite rotational

transformations.

This chapter also provides a detailed analysis of the properties of unes-SFI. Simu-

lated experiments, including online beamforming scenarios, demonstrate that unes-SFI

significantly mitigates the adverse effects caused by unequal microphone spacing. It

achieves substantial improvements in reconstructing the signal at the reference posi-

tion under various conditions. Furthermore, unes-SFI consistently outperforms the

previous SFI approach, delivering marked enhancements in beamforming accuracy and

performance.
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3.1 Overview

The proposed unes-SFI method is designed to tackle two critical challenges in rotation-

robust beamforming: the time-variant acoustic transfer system (ATS) and the use of

unes-CMAs. This method enables the estimation of a virtual signal of an unes-CMA

at its reference position before rotation, using the observed signal obtained after ro-

tation. In contrast to the previous SFI approach, which required an equally spaced

circular microphone array es-CMA, unes-SFI accommodates non-uniformly spaced mi-

crophones. This capability makes unes-SFI particularly suited for practical scenarios,

where unes-CMAs are more prevalent due to manufacturing tolerances or environmen-

tal constraints. It is worth emphasizing that unes-SFI shares a fundamental objective

with previous SFI method [42, 43]: avoiding the need for recalculating or updating

spatial filters after the array undergoes rotation. By addressing the limitations of tra-

ditional SFI, unes-SFI extends the scope of rotation-robust beamforming to include

more diverse and realistic array configurations.

In unes-SFI, the error angle vector ϵ =
[
ϵ1 · · · ϵM

]T
is assumed to be known before-

hand. It is important to clarify that, in the before-rotation state, for a fixed-distribution

M -channel unes-CMA, the microphone closest to the 0° position is designated as the

1st microphone. The subsequent microphones are then numbered sequentially in a

counterclockwise direction as the 2nd microphone, ..., the mth microphone, ..., the

(M − 1)th microphone, and finally the Mth microphone. Here, ϵm ∈ (−2π/M, 2π/M)

represents the angular deviation between the actual position of the mth microphone on

the unes-CMA and its corresponding ideal position in a uniformly spaced distribution.

As shown in Figure 3.1, the proposed method encompasses three distinct steps:

• Compensate for the error angles: Using the known error angle vector ϵ and

the observed signal from the unes-CMA after rotation, we estimate a pseudo-
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Figure 3.1: Conceptual diagram of unes-SFI.

signal that would have been captured by a virtual es-CMA. This step simplifies

the inherently complex problem of handling an unes-CMA by reducing it to a

more manageable equivalent on an es-CMA.

• Sound field interpolation: With the rotation angle ∆ (obtained through var-

ious means such as accelerometers or estimation techniques [45, 62, 63]), we re-

construct the before-rotation signal observed by the virtual es-CMA. This step

reverses the rotational effect on the sound field to provide a consistent reference

observation.

• Recover the non-uniform distribution: Finally, we revert to the original non-

uniform microphone arrangement, recovering the signal that the unes-CMA would

have captured before rotation. This step ensures compatibility with the actual

configuration of the unes-CMA, enabling direct application of the reconstructed

signals to other array signal processing methods.

3.2 Formulation

In this section, we present the mathematical formulation of the proposed method.
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Incorporating the error vector ϵ, the sound field function observed by the unes-CMA

after a rotation of −∆ rads can be expressed as follows

x(ϵ) =
[
x
(
2π·0
M

+ ϵ1
)
· · · x

(
2π(M−1)

M
+ ϵM

)]T
. (3.1)

In (3.1), ϵm can be interpreted as the rotation angle from the ideal position of the

mth microphone in the es-CMA to its actual position in the unes-CMA. This induces

a rotated sound signal, denoted as x(ϵm), which can be computed using the rotation

transform matrix UM (ϵm).

From (2.28), it is evident that when extracting the mth channel signal from the ro-

tated sound field x(∆), only the mth row of the rotation transform matrix UM (∆) is

necessary. Similarly, for themth channel signal of the unes-CMA, x (2π(m− 1)/M + ϵm),

which aligns with the mth channel signal of x(ϵm), we can establish its relationship

with the pseudo observation x̂(0) from a virtual es-CMA, which is

x̂(0) =
[
x̂(0) · · · x̂

(
2π(M−1)

M

)]T
, (3.2)

where •̂ represents a pseudo observation from a virtual CMA. The relationship is then

given by:

x

(
2π(m− 1)

M
+ ϵm

)
= um(ϵm)x̂(0), (3.3)

where um(ϵl) ∈ C1×M denotes the mth row of the rotation transform matrix UM (ϵl).

Referring to (3.3), the complete observation recorded using an unes-CMA after ro-

tation can be expressed as

x(ϵ) = UM (ϵ) x̂(0), (3.4)
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where UM (ϵ) is the compensation matrix defined as

UM(ϵ)
def
=
[
uT

1 (ϵ1) · · · uT
M(ϵM)

]T
, (3.5)

and contains rows from different rotation transform matrices, each corresponding to the

angular deviation of a specific microphone position. From (3.4), x̂(0) can be calculated

as

x̂(0) = UM(ϵ)−1x(ϵ). (3.6)

Consequently, in the first step, the microphone positional errors (ϵ) are compensated,

yielding a virtual sound signal with a uniform distribution derived from the observation

of an unes-CMA. In essence, the unes-CMA is virtually transformed into the es-CMA

using the inverse matrix of UM(ϵ).

In the second step, SFI is applied to x̂(0) to calculate the ∆-rad-rotated result of the

virtual es-CMA. This corresponds to the sound signal captured by the virtual es-CMA

before rotation. The SFI step utilizes the rotation transform matrix for the rotation

angle ∆ to recover the before-rotation signal:

x̂(∆) =
[
x̂(∆) · · · x̂

(
2π(M−1)

M
+∆

)]T
= UM(∆)x̂(0). (3.7)

The final step involves converting the virtual equally spaced signal before rotation,

x̂(∆), back to the real unequally spaced signal observed by the unes-CMA, represented

as

x(∆ + ϵ) =
[
x(∆ + ϵ1) · · ·x

(
2π(M−1)

M
+∆+ ϵM

)]T
. (3.8)

Using a similar approach to the first step (3.4), the before-rotation signal in the
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unes-CMA can be calculated as:

x(∆ + ϵ) = UM(ϵ)x̂(∆). (3.9)

By combining these steps (3.6), (3.7), and (3.9), the relationship between the before-

rotation signal and the after-rotation signal on the unes-CMA can be expressed as:

x(∆ + ϵ) = UM(ϵ)UM(∆)UM(ϵ)−1x(ϵ). (3.10)

Upon completing these three sequential steps, the unes-CMA is effectively aligned

with the original reference position before rotation. The pre-existing spatial filter de-

signed for the reference position can then be directly applied to the reconstructed

signal, x(∆ + ϵ), without requiring re-estimation of the filter. This capability signifi-

cantly enhances the computational efficiency of online processing, making it practical

for real-world scenarios.

3.3 Analysis of the compensation matrix

The compensation matrix UM (ϵ) is fundamental to the unes-SFI method, as it ad-

dresses the angular deviations in microphone positions. By mapping the observed

signal from an unes-CMA to a virtual es-CMA, UM (ϵ) enables the subsequent opera-

tions, such as rotation and signal recovery, to be performed as if the observations were

made with an equally spaced array. Therefore, it is necessary to analyze the properties

of UM (ϵ), as these directly impact the effectiveness of the unes-SFI method.

When M , the number of microphones, is even, the Nyquist frequency (Nyqf) com-

ponent plays a significant role in the behavior of UM (ϵ). Handling this component

appropriately is critical for maintaining the desired properties of UM (ϵ), such as in-
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vertibility and unitarity, which directly affect the accuracy of the compensation. Three

approaches for dealing with the Nyqf component, as previously introduced in Sec-

tion 2.3.2, are: CoN, ReN, and ZPN. The subsequent analysis of UM (ϵ) will provide

deeper insights into its behavior under different Nyqf approaches, guiding optimal de-

sign and application of the proposed method when M is even.

3.3.1 Periodicity

Evidently, in the previous SFI for an es-CMA [42, 43], the interpolation accuracy

exhibits periodicity with respect to the rotation angle. This periodicity arises because

a rotation of the es-CMA by an angle equivalent to the angular spacing between ad-

jacent microphones (2π/M) results in a cyclic permutation of the microphone indices.

Consequently, the rotation transform matrix UM(∆) becomes anM -cyclic permutation

matrix in such cases.

In our proposed unes-SFI, this periodicity is expected to persist, even when the

angles between adjacent microphones differ from each other. For instance, consider the

scenario where x(ϵ) is observed after the unes-CMA undergoes a rotation of −∆ rads,

which corresponds to the angular deviation between two specific channels, the ath and

bth channels (a ̸= b),

−∆ =

(
2π(b− 1)

M
+ ϵb

)
−
(
2π(a− 1)

M
+ ϵa

)
, (3.11)

then the following equation holds:

x(∆ +
2π(b− 1)

M
+ ϵb) = x(

2π(a− 1)

M
+ ϵa). (3.12)

The left-hand side of (3.12) represents the signal of the bth channel before rotating by
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−∆ rads, whereas the right-hand side corresponds to the signal of the ath channel after

rotation. This indicates that the bth channel’s position before rotation aligns with the

ath channel’s position after rotation when the rotation angle −∆ equals the angular

deviation between these two channels. From this result, we can deduce that, even in an

unes-CMA, the interpolation accuracy of a specific channel exhibits periodic behavior

with respect to the rotation angle. The accuracy peaks whenever the rotation angle

matches the angular deviation between two channels.

(3.12) can be analytically proven. According to the unes-SFI formulation (3.10), we

can calculate the estimated signal of the bth channel before rotation as follows:

x(∆ +
2π(b− 1)

M
+ ϵb) = ub(ϵb)UM(∆)UM(ϵ)−1x(ϵ), (3.13)

where ub(ϵb)UM(∆) can be expressed as

ub(ϵb)UM(∆) = ub(ϵb +∆) = ub(ϵa +
2π(a− b)

M
). (3.14)

By substituting m = b and δ = M(ϵa + 2π(a− b)/M)/2π into L in (2.25), we obtain

L = n− b−
M
(
ϵa +

2π(a−b)
M

)
2π

= n− a− Mϵa
2π

. (3.15)

According to (2.25) and (2.28), it is easy to know that

ub(ϵb)UM(∆) = ua(ϵa). (3.16)
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Using (3.16), we can obtain (3.12) by simplifying the right-hand side of (3.13):

x(∆ +
2π(b− 1)

M
+ ϵb) = ua(ϵa)UM(ϵ)−1x(ϵ)

= x(
2π(a− 1)

M
+ ϵa). (3.17)

However, (3.12) holds only in CoN and ReN but does not apply in ZPN. In ZPN,

the treatment of the Nyqf component introduces an additional constraint that affects

the equivalence relation described in (3.12). Specifically, because the parameter δ of

L is ignored in the Nyqf component, the relationship in (3.15) no longer holds, but

instead becomes

L = n− b ̸= n− a = n− b+ (b− a). (3.18)

Hence, the Nyqf components for the bth and ath channels are given by

ejLπb = (−1)n−b ,

ejLπa = (−1)n−b+(b−a) = (−1)n−b · (−1)b−a . (3.19)

From the expressions, we observe that for ejLπb = ejLπa to hold, the additional factor

(−1)b−a must equal 1, which happens only if b− a is an even number.

For L in the remaining terms of (2.25), where δ is not replaced by zero, the equiv-

alence relation in (3.15) continues to hold. Consequently, in the ZPN approach, the

equivalence relation described in (3.12) holds only when b− a is even. For cases where

b− a is odd, the mismatch in the Nyqf component means that the equivalence breaks

down. Thus, in ZPN, although the interpolation accuracy of a specific microphone

exhibits periodicity with respect to the rotation angle, similar to other approaches,
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the maximum interpolation accuracy can only be achieved when the rotated micro-

phone aligns with the position of another microphone and simultaneously skips an odd

number of intermediate microphones.

3.3.2 Singularity

As seen in (3.10), the inverse matrix of UM (ϵ) holds a crucial significance for the

performance of unes-SFI. Therefore, the effectiveness of unes-SFI is heavily influenced

by the singularity of UM (ϵ). Under typical conditions, the inverse of UM (ϵ) exists,

except in cases where two microphones are positioned at the same location on the

unes-CMA, which is physically impossible in practical applications. However, as dis-

cussed in the preceding section, an exceptional situation arises in ReN, where UM (∆)

becomes singular. To address this, we will further examine whether a similar phe-

nomenon occurs for unes-SFI in ReN and aim to derive a more universally applicable

conclusion regarding UM (ϵ).

Firstly, when M is even, according to (2.26), the cos function in the latter term of

Re (Um,n,δ) can be rewritten as

cos

(
M + 2

2M
Lπ

)
= cos

(
1

2
Lπ +

1

M
Lπ

)
= cos

(
1

2
Lπ

)
cos

(
1

M
Lπ

)
− sin

(
1

2
Lπ

)
sin

(
1

M
Lπ

)
, (3.20)

whereas the other part in the latter term is reformulated as

sinc
(
L
2

)
sinc

(
L
M

) =
2

M
·
sin
(
Lπ
2

)
sin
(
Lπ
M

) . (3.21)

To ensure the validity of (3.21) for ∀n,m ∈ [1,M ], it is imperative to assume that
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δ ̸= 0, thereby preventing a zero denominator when n = m.

Thus, (2.26) is simplified to

Re (Um,n,δ) =
(1− cosLπ)

M
+

2

M
·
sin
(
Lπ
2

)
sin
(
Lπ
M

) ·[
cos

(
Lπ

2

)
cos

(
Lπ

M

)
− sin

(
Lπ

2

)
sin

(
Lπ

M

)]

=
1

M

[
1− cos (Lπ) +

sin (Lπ) cos
(
Lπ
M

)
sin
(
Lπ
M

) − 2sin2
(Lπ

2

)]

=
1

M
·
sin (Lπ) cos

(
Lπ
M

)
sin
(
Lπ
M

) = −sin (δπ)

M
· Vm,n,δ, (3.22)

where Vm,n,δ is defined as

Vm,n,δ =
(−1)n−mcos

(
Lπ
M

)
sin
(
Lπ
M

) = (−1)n−mcot

(
Lπ

M

)
. (3.23)

In ReN, as the imaginary part (2.27) is neglected, Um,n,δ is simplified to Re (Um,n,δ).

Consequently, UM (ϵ) in (3.5) can be redefined as

UM (ϵ) =


− sin(δ1π)

M

. . .

− sin(δMπ)
M



·


V0,0,δ1 · · · V0,M−1,δ1

...
. . .

...

VM−1,0,δM · · · VM−1,M−1,δM


=DM (ϵ) · VM (ϵ) , (3.24)

where δi = Mϵi/2π ∈ (−1, 1), i ∈ [1,M ]. Then, the determinant of UM (ϵ) can be
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calculated as

det (UM (ϵ)) = det (DM (ϵ)) · det (VM (ϵ)) . (3.25)

As previously indicated, it is assumed that δi is not equal to zero for ∀i ∈ [1,M ],

consequently rendering det (DM (ϵ)) as a non-zero constant. As a result, the matrix

UM (ϵ) is singular only when det (VM (ϵ)) = 0.

Here, for simplicity, we give a concrete example with M = 2 and ϵ =
[
ϵ1 ϵ2

]T
.

Then, VM (ϵ) is calculated as

VM (ϵ) =

V0,0,δ1 V0,1,δ1

V1,0,δ2 V1,1,δ2



=

 −cot
(
δ1
2
π
)

cot
(

(δ1−1)
2

π
)

cot
(

(δ2+1)
2

π
)
−cot

(
δ2
2
π
)
 . (3.26)

The determinant of VM (ϵ) can be obtained as

det (VM (ϵ)) = −
4cos

(
(δ1+δ2)

2
π
)
· cos

(
(δ1−δ2)

2
π
)

cos
(

(δ1+δ2)
2

π
)2
− cos

(
(δ1−δ2)

2
π
)2 . (3.27)

Obviously, when δ1 + δ2 = 1 or δ1 − δ2 = 1, the determinant of VM (ϵ) will be zero.

However, δ1 − δ2 = 1, which corresponds to ϵ1 − ϵ2 = 2π/M , indicates that two

microphones are overlapped and placed in the same position. These conditions were

previously noted as physically implausible. Thus, UM (ϵ) becomes singular when δ1 +

δ2 = 1, which can also be expressed as ϵ1 + ϵ2 = π.

When there is a zero-value δ, e.g., δi = 0 for the ith channel, the ith rows of DM (ϵ)
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and VM (ϵ), denoted by di(ϵi) and vi(ϵi), respectively, will be adjusted as

di(ϵi) = vi(ϵi) = Ii, (3.28)

where Ii is the ith row of an M ×M identity matrix.

Taking M = 4 and ϵ =
[
ϵ1 · · · ϵ4

]T
with ϵ4 = 0° as an example, the determinant

of VM (ϵ) can be calculated as

det (VM (ϵ)) =
4 cos

(
δ2−δ3+1

4
π
)

cos
(
δ1+1
4

π
)
sin
(
δ1
2
π
) · sin

(
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)
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)

sin
(
δ3+1
4

π
)
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(
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π
) · cos(δ1 + δ2 + δ3

4
π

)
. (3.29)

Similarly, UM (ϵ) is singular only when δ1 + δ2 + δ3 = 2, which can be reformulated as

ϵ1 + ϵ2 + ϵ3 + ϵ4 = π.

Revisiting the earlier conclusion in Section 2.3.2, we can evidently see that in ReN,

UM (∆) becomes singular when ∆ is equal to π/M , which in turn implies that the

sum of ∆ values from all M channels is also equal to π. As a result, a more general

conclusion can be drawn, stating that UM (ϵ)−1 will not exist when

M∑
i=1

ϵi = π. (3.30)

We will further experimentally investigate whether (3.30) holds when M is set to larger

than 4 in Section 3.4.2.

It is important to note that, even in the absence of the previously discussed ab-

normal situation, UM (ϵ) may still occasionally be a nearly singular matrix. In such

instances, we apply singular value decomposition (SVD) [70] to UM (ϵ), disregarding

the eigenvalues and eigenvectors associated with exceptionally small condition num-
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bers. Subsequently, the factorized coefficients of this truncated SVD [71] are employed

to compute the inverse matrix of UM (ϵ).

3.4 Simulated experimental evaluation

3.4.1 Setup

Dataset and preprocessing

To evaluate the performance and robustness of the proposed method to the rotation

of an unes-CMA, simulation experiments were conducted using the SiSEC database

[72]. Each utterance in the database was sampled at 16 kHz. Eight speech signals were

selected, consisting of four female and four male voices, with sound sources positioned

at various angles, as illustrated in Figure 3.2. To simulate a reverberant environment,

the sound signals were convolved with room impulse responses (RIRs) simulated by

an RIR generator [73] on the basis of the image method [74]. This process produced

microphone signals with an approximate reverberation time of 100ms. For analysis

in the time–frequency domain, the STFT was applied using a 1/8-shifted Blackman

window with a length of 64ms.

Simulated experimental setup for unes-CMAs

The sound signals were recorded using an M -channel CMA with a radius of 0.05m

in a noise-free room. To create an unes-CMA, an error angle, denoted by ϵi(°), i ∈

{1, ...,M}, was introduced to the position of each microphone. During the construction

of the unes-CMA, it is possible that, after introducing error angles to the positions of

two microphones, their positions may become swapped. For example, when creating
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Figure 3.2: Simulated environment in the experiments.

a 6-channel unes-CMA, suppose a positive error angle of ϵ1 = 40° is added to the 1st

microphone initially located at 0°, and a negative error angle of ϵ2 = −40° is added

to the 2nd microphone initially located at 60°. As a result, the 1st microphone is now

positioned at 40°, while the 2nd microphone is positioned at 20°. According to the

convention described in Section 3.1, we always designate the microphone closest to 0°

as the 1st microphone. Therefore, we exchange the indexing of the two microphones. In

the final configuration, the microphone located at 20° is considered the 1st microphone

with an error angle of ϵ1 = 20°, and the microphone located at 40° is considered the

2nd microphone with an error angle of ϵ2 = −20°.

The angle error for each microphone followed a Gaussian distribution with zero mean

and variances ranging from (0°)2 to (
√
500°)2 in increments of (

√
10°)2. All the errors
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were independently and identically distributed. For each Gaussian distribution with

a specific variance, 100 samples were generated. The simulation process proceeded as

follows: initially, the sound field was simulated after the unes-CMA rotated ∆ rads.

Subsequently, this sound signal was employed to estimate the observation signals before

rotation at the reference position, with the rotational angle ϕ = ∆π/180° being a known

value.

Evaluation criteria

In the initial experiment, we assessed the performance in a scenario involving a

single source, where sound sources were not mixed. The evaluation was based on the

signal-to-error ratio (SER) [42,43,75–77] defined as

SERm,k = 10 log10

( ∑
t |xm,t,k|2∑

t |x̂m,t,k − xm,t,k|2

)
, (3.31)

where xm,t,k is the time–frequency domain signal and x̂m,t,k is its estimate. m, t, and

k denote the channel, time frame, and frequency bin, respectively. We conducted this

experiment by varying the number of microphones, M , within the range of 3–6, and

manipulating the rotation angle ϕ.

In the second experiment, we employed the Minimum Power Distortionless Response

(MPDR) beamformer, which has been introduced in Section 2.2.2, to compare the

source enhancement performance characteristics of different methods. The evalua-

tion was based on the source-to-distortion ratio (SDR) and source-to-interference ratio

(SIR) [78]. From [42, 43], we utilized the covariance matrix of the interference signal

and the relative transfer function (RTF) [17, 79] to estimate the beamformer’s filter.

The RTF was calculated using the RIR from the target source to each microphone.
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Then, two sources were randomly selected and mixed into the observation, with an

angular separation between them set at 30°, 60°, . . . , 180°. This enabled us to simulate

12 environments, with two patterns at each angle.

3.4.2 Results of sound field interpolation

Interpolation accuracy

Initially, we focus solely on the sound source in the direction of 0°. Figure 3.3

presents several examples of SER results obtained using the previous SFI method

[42, 43] and the proposed unes-SFI when the rotation angle ϕ ranges from 20° to 30°

and M is varied from 4 to 6. The mean SER of all M channels is shown for a specific

standard deviation (10°) of the error angle ϵi. The results in Figure 3.3 highlight that,

in general, the proposed unes-SFI demonstrates superior capability to estimate the

spectrum compared with the previous SFI method, achieving a performance increase

ranging from a minimum of 5 dB to a maximum of 15 dB. However, it should be noted

that higher-frequency components are relatively challenging for both methods because

the high-frequency components of speech signals exhibit weaker energy and more rapid

variations, making them difficult to estimate accurately. To simplify the analysis, we

limited the frequency range to 0–3 kHz for SER evaluation and averaged the SERs in

decibels in all subsequent experiments.

Effect of the Nyqf component

To present the results clearly and concisely, we consider two specific distributions of

the unes-CMA withM = 5 and 6, with a standard deviation of 10°:
[
−8°, 85°, 150°, 221°, 295°

]
and

[
2°, 46°, 117°, 171°, 253°, 295°

]
. Here, we focus solely on the sound source in the di-
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Figure 3.3: Examples of SERs as a function of frequency.

rection of 0°. Figures 3.4 and 3.5 show the variation of the SER concerning the rotation

angle, with the vertical axis representing the average SER over the frequency range

of 0–3 kHz for the first channel, and the horizontal axis illustrating the rotation angle

of the unes-CMA. The baseline curve represents the SER without any interpolation.

When M = 6, the results of the previous SFI method [42, 43] with ReN are obtained,

which has been proven to be the most effective method in previous research [43]. Ad-

ditionally, the SERs of unes-SFI with CoN, ReN, and ZPN are also displayed.

As observed in the figures, owing to erroneously treating the unes-CMA as an

es-CMA, the previous SFI method consistently performed worse than unes-SFI when

M = 5 and unes-SFI with CoN and ReN when M = 6. However, it occasionally out-

performs unes-SFI with ZPN only at a few rotation angles around 169° and 293°. We

also find that the SER of unes-SFI exhibits periodicity, as previously analyzed. When

the first channel is rotated to the same position as another channel before rotation,

the SER becomes maximum. However, in ZPN with M = 6, the SERs significantly
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Figure 3.5: Dependence of SER on the rotation angle with M = 6, where the baseline

indicates the cases without any interpolation, and ZPN, ReN, and CoN indicate ne-

glecting the Nyqf component, considering only the real part of the Nyqf component and

employing the Nyqf component’s complex value form.

differ from those in CoN and ReN when the first channel rotates to the second, fourth,

and sixth channels, whereas they remain the same for the first, third, and fifth chan-

nels. This reflects the effect of ignoring the Nyqf component and supports the earlier

conclusion that in ZPN, the interpolation accuracy of a specific microphone cyclically

is maximum when the microphone rotates to the position of other microphones before

rotation and skips an odd number of microphones simultaneously. Furthermore, when

M = 6, ReN exhibits slightly higher performance at any rotation angle than CoN.

As explained in [42, 43], the reason is that the presence of the complex-valued Nyqf

component in CoN may adversely impact the performance of SFI. And it should be

noted that the time consumption of ZPN, ReN, and CoN is generally the same be-
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Figure 3.6: Dependences of condition number and SER on the position of the moving

microphone with M = 5.

cause these three methods share the same formulation for calculation, as depicted in

(2.25), and the difference among these three methods lies solely in how the Nyqf com-

ponent is handled. Different approaches to handling this Nyqf component are unlikely

to significantly impact the time consumption.

To assess the impact of the Nyqf component on the singularity of the compensation

matrix UM (ϵ), we maintained the same microphone distributions as in the previous

experiment, but allowed the position of the first channel’s microphone to vary along

the unes-CMA. Specifically, we moved it around a circle along the unes-CMA, ranging

from −8° to 351° when M = 5 and from 2° to 361° when M = 6. The condition

number of UM (ϵ) was employed to quantify the singularity of UM (ϵ), where a larger

condition number indicates a more singular matrix [80]. At each new position of the

moving microphone, we rotated the unes-CMA by 20° and calculated both the condition

number and SER.

Figures 3.6 and 3.7 show the dependences of the condition number of the compensa-

tion matrix and the SER on the moving microphone position. The vertical axes on the

left and right sides, respectively correspond to the condition number and the average

SER of the microphone in the second channel of the initial distribution before relocating

the microphone in the first channel. Irrespective of the moving microphone position,
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Figure 3.7: Dependences of condition number and SER on the position of the mov-

ing microphone with M = 6, where ReN and CoN indicate considering only the real

part of the Nyqf component and employing the Nyqf component’s complex value form,

respectively.

we consistently utilize the microphone located at 85° (M = 5) and 46° (M = 6) be-

fore rotation to compute the SER result. Note that this choice is maintained even if

the moving microphone alters the position order of channels, given the possibility of

the channel position being not second after the microphone moved. The horizontal

axis represents the moving microphone’s position before rotation. For M = 6, only

results for CoN and ReN are shown, as ZPN was previously found to be ineffective and

unsuitable.

As observed in the figures, when the moving microphone is close to another micro-

phone, the corresponding two rows in UM (ϵ) become similar to each other. This leads

to a larger condition number, indicating a more singular UM (ϵ), owing to which the

SER decreases. At certain positions, such as 105° in Figure 3.6 and 66° in Figure 3.7,

the SER results are extraordinarily high, because after rotating by 20°, the microphone

used to calculate the SER aligns with the position of the moving microphone before

rotation.

For M = 5 and M = 6 in CoN, there are four and five positions of the mov-

ing microphone causing the abnormally large condition number, respectively, where

these positions coincide with the other fixed microphones. However, when M = 6
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in ReN, there are six such positions, although we expected only five. The additional

position angle is 198°. At this position, the 6-channel distribution in unes-CMA is[
46°, 117°, 171°, 198°, 253°, 295°

]
. Thus, the error vector ϵ is

[
46°, 57°, 51°, 18°, 13°,−5°

]
.

This arrangement leads to the sum of all error angles being equal to 180°, which vali-

dates our previous conclusion in (3.30).

Note that the SERs at these singular positions are slightly higher than those nearby,

owing to the application of truncated SVD at these positions, which reduces UM (ϵ)’s

singularity.

From Figure 3.5, when M = 6, the interpolation accuracy of CoN is slightly lower

than that of ReN, but the degree of degeneracy is minimal and acceptable. From Fig-

ure 3.7, it is evident that ReN can lead to an unexpected abnormal situation where

the proposed unes-SFI fails owing to a singular compensation matrix. Consequently,

CoN is deemed the most reasonable approach to handling the Nyqf component com-

pared with the other two methods. Therefore, in subsequent evaluations, CoN will be

employed when M is an even number.

Robustness to the variance of angle error

Figure 3.8 shows the relationship between the variance of the error angles and the

SER improvement for cases where Ms are 5 and 6, and ϕ is 20°, with the sound source

located at 0°. The SER improvement quantifies the increase in SER achieved through

signal processing. The baseline used in SER improvement is obtained without any

processing, where the SER is computed by comparing the uninterpolated signal after

rotation with the target signal before rotation. Each box in the graph represents the

mean SER improvement over M channels for each sample, resulting in 100 data points

in each box.
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Figure 3.8: Boxplots of the relationship between the variance of the error angle and the

SER improvement at frequencies up to 3 kHz relative to the cases without interpolation.

The results clearly demonstrate that as the variance of the errors of angles increases,

the SER improvement of the previous SFI method [42,43] experiences significant degra-

dation from approximately 15 dB to as low as 4 dB. In contrast, our proposed method

maintains its excellent interpolation performance at 15 dB, even with substantial errors

of angles. This underscores the impracticality of directly applying ordinary SFI to an

unes-CMA and highlights the advantages of employing our novel technique.
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Figure 3.9: Boxplots of mean SER improvement at frequencies up to 3 kHz for M

channels in eight situations.

Channelwise SER improvements

Figure 3.9 illustrates the channelwise SER improvements obtained for various num-

bers of microphones M and rotation angles ϕ with the standard deviation of error set

to 10°. Here, we use eight sound sources situated in different directions. The mean

SER improvement relative to cases without interpolation is calculated over M chan-

nels. Each box in Figure 3.9 contains eight samples, corresponding to the mean SER

improvement of eight sound sources.

The results demonstrate that the proposed method consistently exhibits greater SER

improvement than the previous technique [42,43] across all situations. Specifically, the

minimum improvement occurs at M = 3 and ϕ = 10° with an increase of 1 dB, while

the maximum improvement is observed at M = 6 and ϕ = 40°, reaching approxi-

mately 8 dB. As anticipated, in the proposed method, an increase in the number of

microphones leads to enhanced performance owing to the higher spatial sampling rate.

Conversely, in the previous SFI method, using more microphones does not always lead

to an improved SER and may even result in a poorer performance. This is observed

when changing the number of microphones M from 3 to 4 and from 5 to 6. This phe-

nomenon can be attributed to the introduction of more errors in the rotation transform

matrix UM(∆) with more microphones, where the benefits of a higher spatial sampling
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rate do not outweigh the adverse effects of errors.

Furthermore, the proposed method achieves a greater SER improvement with an

increase in the rotation angle. This can be attributed to the inferior performance of

the case without any processing at higher rotation angles, where the proposed method’s

capability to compensate for microphone positions becomes more crucial.

Robustness to the error in rotation angle

The rotation angle is a critical prior knowledge that must be known in advance for

our proposed method. In cases where the rotation angles are inaccurately measured

or estimated, the performance of our method could be affected. In this subsection, we

explore a scenario where the rotation angle is not accurately measured and investigate

the robustness of our proposed method to errors in the rotation angle. In various

methods for rotation angle estimation, the error in rotation angle estimation can be

limited to within 5°. Consequently, we present the channelwise SER improvement under

varying errors in rotation angle estimation, ranging from −5° to 5°. For simplicity, here

we only focus on the situations where the number of microphonesM is 5 and 6, rotation

angle ϕ is 10° and 30°. We continue to employ eight sound sources positioned in various

directions. The mean SER improvement, relative to cases without interpolation, is

computed over M channels. Each box encompasses eight samples, corresponding to

the mean SER improvement of eight sound sources. As depicted in Figure 3.10, a

degradation in SER improvement is observed with an increase in the absolute value of

the error in rotation angle estimation, aligning with our expectations. However, the

extent of degradation is not considerable, with a reduction of less than 3 dB. Despite

this, our method remains effective to a certain degree in reconstructing the sound signal

before rotation.
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Figure 3.10: Boxplots of mean SER improvement under different errors of rotation

angle estimation.
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Figure 3.11: Examples of extreme distributions.

Influence of microphone distributions

The microphones in the unes-CMA are generally distributed unevenly throughout the

circular array, as shown in Figure 3.2. However, in some atypical cases, the microphones

may exhibit central clustering within certain regions of the unes-CMA. In this study,

we considered three such extreme distributions when the number of microphones is

5: distributions spanning only half of the circle (Half), distributions spanning only
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a quarter of the circle (Quarter), and distributions with microphones placed next

to each other at an angular interval of 1° (Adjacent). Examples of these extreme

distributions are shown in Figure 3.11. The baseline configuration corresponds to the

typical scenario where microphones are unequally spaced throughout the entire circle

(Baseline).

To evaluate the generalization capacity of the proposed method, we analyzed the

SER improvement results at rotation angles of 20°, 100°, and 190°, as illustrated in

Figure 3.12. The rotation angles of 100° and 190° were chosen to examine the per-

formance of Half and Quarter when the microphones’ positions after rotation fall

outside the before-rotation distribution range. The results indicate that the proposed

method can accurately estimate the target signal with Half and Quarter at a rotation

angle of 20°. It is also noteworthy that the proposed method performs better under

the Quarter than under the Half, and both outperform the Baseline. This is be-

cause a rotation angle of 20° does not cause all microphones to fall outside the original

distribution range. Moreover, the more concentrated microphone distributions in the

Quarter and Half provide a higher spatial sampling rate around the after-rotation

positions, thereby leading to more accurate interpolation results. However, when ro-

tating by 100° and 190°, the proposed method demonstrates some effectiveness only

for Half, although the SER improvement is notably 5−10 dB smaller than that for

the Baseline. Adjacent presents a significant challenge. In the case of Adjacent, it

is observed that the proposed method cannot provide satisfactory results regardless of

the rotation angle. These behaviors are expected as Quarter and Adjacent exhibit a

small sampling range and limited spatial information available for interpolation beyond

the original distribution.

Surprisingly, Adjacent’s performance is less inferior than Quarter’s when the ro-
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Figure 3.12: Boxplots of mean SER improvement at frequencies up to 3 kHz relative

to the cases without interpolation in extreme distributions, where Baseline, Half,

Quarter, and Adjacent represent distributions throughout the entire circle, distri-

butions spanning only half of the circle, distributions spanning only a quarter of the

circle, and distributions with microphones placed next to each other, respectively.

tation angles are 100° and 190°, contrary to our initial expectations. This unexpected

outcome can be attributed to the application of truncated SVD in 3.3.2, which effec-

tively mitigated the issues with the compensation matrix for Adjacent, preventing ex-

tremely erratic performance. If the truncated SVD were not applied, all rows in UM (ϵ)

of Adjacent would be similar to each other, leading to a nearly singular UM (ϵ) and

a significantly deteriorating SER improvement. Thus, the observed instances where

the performance of the previous SFI method [42, 43] is not as poor as that of the

proposed method can be attributed to the previous SFI method’s lack of necessity to

address the sampling range. In addition, the previous SFI method does not handle the

ill-conditioned compensation matrix.

3.4.3 Results of source enhancement with batch processing

In this experiment, we evaluate source enhancement performance using the MPDR

beamformer. We fix the number of microphones at M = 5 and vary the rotation

angle ϕ to 10°, 20°, 30°, and 40°. Firstly, we compute the filter weight w for the MPDR
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Table 3.1: Abbreviations for spectrograms from different evaluation settings

Spectrograms from different Status of evaluation conditions

evaluation settings B R I S L U

B0: No beamforming 0 0 0 0 0 0

R0: No rotation 1 0 0 0 0 0

I0: No interpolation 1 1 0 0 0 0

S1: SFI 1 1 1 1 0 0

L1: CSM-LI 1 1 1 0 1 0

U1: proposed unes-SFI 1 1 1 0 0 1

beamformer using the RTF and the multichannel STFT spectrogram obtained from the

unes-CMA at its original microphone position before any rotation. Then, the weight w

is applied to this spectrogram without rotation; this reference performance is denoted

by R0. This serves as the most favorable scenario, as it uses true signals instead

of interpolated signals for the MPDR beamformer. In the subsequent content, for

simplicity in naming spectrograms from different methods, we use a set of abbreviations

to represent the evaluation conditions: B represents Beamforming, R for Rotation, I for

Interpolation, S for SFI [42, 43], L for CSM-LI method [40] which employs the linear

interpolation method only on the two neighboring microphones in the time domain, U

for unes-SFI, Index 0 for off, and Index 1 for On.

Therefore, the various spectrograms from different evaluation settings, which we

subsequently postprocessed using the MPDR beamformer’s weight w to generate the

estimated target signal, are summarized in the Table 3.1. We used the unprocessed

case (B0), where the microphone signal was mistakenly treated as the target signal

without applying beamforming, and R0 as baselines for comparison.

Additionally, we recalculated a new MPDR beamformer using the same RTF before



66 3 Unequally Spaced Sound Field Interpolation

SD
R 

[d
B]

10 deg 20 deg 30 deg

0

5

10

15

40 deg
Rotation angle

-5

: ��: ��: ��: �� : �� : �� : ����� : �����

Figure 3.13: Boxplots of SDR obtained by MPDR beamformer in different situations:

unprocessed (B0), no rotation of the CMA (R0), without interpolation when the CMA

rotates (I0), with ordinary SFI when the CMA rotates (S1), CSM-LI when the CMA

rotates (L1), unes-SFI when the CMA rotates (U1), re-estimation of the filter after

ordinary SFI when CMA rotates (S1-Re), and re-estimation of the filter after unes-SFI

when CMA rotates (U1-Re)

rotation and the interpolated spectrograms from S1 and U1, and applied this newly de-

veloped MPDR beamformer to the interpolated spectrograms; the results were denoted

by S1-Re and U1-Re, respectively. These results provide insights into the performance

of online beamforming described in the next experiment.

The SDR and SIR results for different scenarios with a standard deviation of error set

to 10° are presented in Figure 3.13 and Figure 3.14. As expected, B0 exhibits the lowest

SDR and SIR (0 dB), whereas R0 achieves the most significant source enhancement

performance since the ATS remains time-invariant. Interestingly, the S1 approach does

not perform as well as anticipated. In most environments, S1’s SDR and SIR show

little difference from I0’s SDR and SIR, and in some circumstances, S1’s performance

is even inferior to I0’s performance. These findings indicate that the previous SFI

method is ineffective when the CMA undergoes rotation owing to the non-uniformity

of microphone spacing. In source enhancement using the MPDR beamformer, the
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Figure 3.14: Boxplots of SIR obtained by MPDR beamformer in different situations:

unprocessed (B0), no rotation of the CMA (R0), without interpolation when the CMA

rotates (I0), with ordinary SFI when the CMA rotates (S1), CSM-LI when the CMA

rotates (L1), unes-SFI when the CMA rotates (U1), re-estimation of the filter after

ordinary SFI when CMA rotates (S1-Re), and re-estimation of the filter after unes-SFI

when CMA rotates (U1-Re)

previous interpolation provides only a slight improvement, and it is likely that a better

source enhancement can be achieved without employing the previous SFI method. In

contrast, the proposed method (U1) outperforms in both the case without interpolation

(I0) and that with the previous interpolation technique (S1 and L1) by approximately

3−9 dB and 2−7 dB, respectively. Moreover, it approaches the performance of the

best-case scenario (R0), with a difference of less than 4 dB, regardless of the type of

simulated environment used. The unequally spaced interpolation method demonstrates

robustness to the non-uniform distribution of microphones on the CMA, significantly

enhancing the array signal processing performance.

Furthermore, U1-Re performs similarly to U1, suggesting that unes-SFI can likely

improve online processing as well, with only a slight decline of less than 1 dB due to

the small mismatch between the covariance matrix estimated from the interpolated

spectrogram and the pre-estimated RTF. Conversely, S1-Re exhibits poor source en-
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hancement results, and is almost as ineffective as B0. One of the main reasons for

such degraded performance is that the previous SFI method cannot precisely interpo-

late the spectrogram before rotation, resulting in a covariance matrix that is entirely

mismatched with the RTF.

3.4.4 Results of source enhancement with online processing

In this experiment, we propose the utilization of SFI for beamforming in an on-

line processing scenario, taking into account continuous dynamic changes in the ATS.

Online processing is designed to effectively handle minor variations in the ATS. As

outlined in Section 2.3.3, to achieve this objective, we introduce a common smoothing

factor denoted by α [64, 65], which enables the updating of spatial covariance during

online processing. Additionally, we use the matrix inversion lemma, particularly the

Sherman–Morrison formula [66–68], to alleviate the computational complexity asso-

ciated with the covariance inversion in the MPDR formulation. By employing these

techniques, we aim to increase the efficiency and effectiveness of the beamforming pro-

cess in the presence of ATS variations.

It is noteworthy that the algorithm employed for online beamforming in this experi-

ment bears a similarity to that utilized in the previous research [43]. The experimental

conditions closely resemble those described in 3.4.1. However, there are some dif-

ferences as follows. Two source signals were utilized, each with a duration of 40 s.

Additionally, we simulated the impulse response with reverberation times of 100ms

and 500ms. The positions of the two sources were located at angles of 60° and 150°,

following the alignment shown in Figure 3.2. The frame length was set to 256ms, and

a segmental SDR with a length of 1 s was employed to evaluate source enhancement

performance. For the smoothing factor α, we selected a value of 0.99, which has been
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Figure 3.15: Segmental SDR every 1 s with M = 5 and 6 and RT60 = 100ms and

500ms, where the two vertical dashed lines indicate the time points when the rotation

started: 0°⇒ 20°⇒ 40°. B0 shows the mixture itself, R0 shows the case where rotation

does not occur, I0 and S1 respectively show online processing without and with ordinary

interpolation, and U1 shows online processing with the unes-SFI.

empirically validated to produce the highest segmental SDR. To initialize V̂ −1
f , we

used the inversion of the covariance matrix over the first 10 frames. During the exper-

iment, the unes-CMA underwent two rotations: the first rotation commenced at 10 s,

progressing from 0° to 20°, and the second rotation began at 30 s, spanning from 20° to

40°. Notably, the unes-CMA did not instantaneously rotate at 10 s or 30 s but rather

underwent a gradual rotation at a uniform speed of 0.01° per time sample (equivalent

to 160° per second). This rotation speed aligns with the typical average rotation speed

for humans or humanoid robots. The observations in this experiment were generated

by concatenating the observations of the unes-CMA after rotating at different angles

in the simulation.

Figure 3.15 presents the segmental SDR results obtained with M = 5 and 6, and

reverberation times of 100ms and 500ms. As shown, the R0 scenario, where the

unes-CMA does not rotate, consistently achieves the most effective source enhance-

ment performance. Surprisingly, unlike batch processing, the B0 method does not
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yield the lowest SDRs, contrary to initial expectations. The S1 method exhibits the

poorest performance at about −6 dB, sometimes even worse than the I0method in some

scenarios. These observations clearly indicate that the previous SFI technique [42, 43]

is entirely ineffective when applied to an unes-CMA in online beamforming processing.

In comparison, our proposed method (U1), which achieved an average improvement

of 9 dB in SDR score, exhibits a significantly improved performance compared with S1,

achieving results closest to the highest performance (R0) even in challenging environ-

ments with long reverberation time. This demonstrates the robustness and effectiveness

of our approach in the context of online beamforming processing.

3.5 Conclusions

In this chapter, we proposed a novel framework for rotation-robust beamforming on

an unes-CMA, building upon and extending prior research. By enhancing the sim-

ple SFI method, we developed the unes-SFI approach, incorporating a compensation

matrix and adapting the SFI technique. This framework effectively enables the trans-

formation of the time-variant ATS on an unes-CMA into a time-invariant ATS on

an es-CMA, allowing for the estimation of the unes-CMA signal before rotation and

achieving rotation-robust beamforming. We also conducted an in-depth analysis of the

compensation matrix’s properties and the influence of the Nyqf component.

Through a series of comprehensive simulated experiments, we have systematically

evaluated the performance and robustness of the proposed interpolation framework

across several critical dimensions. First, we demonstrated that the framework achieves

high interpolation accuracy, successfully reconstructing before-rotation signals. Further

analysis confirmed that the presence of Nyqf component has a significant impact on

interpolation performance, thereby validating our theoretical analysis.
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The proposed framework also exhibits strong robustness. It maintains stable inter-

polation performance even under increasing error angles and shows resilience to inaccu-

racies in the estimated rotation angle. Channelwise SER evaluations further confirmed

that the method provides notable improvements in signal estimation compared to pre-

vious approaches across a range of scenarios. Moreover, we investigated the influence

of microphone distribution on interpolation performance. The results indicate that

microphone configuration plays a critical role in overall performance, highlighting the

need for future research to mitigate this dependency.

Finally, the proposed method demonstrated consistent improvements in downstream

array signal processing tasks, such as source enhancement using the MPDR beam-

former, further underscoring its practical effectiveness and adaptability for rotation-

robust processing.

However, the method has limitations that warrant further exploration. In this study,

we assume prior knowledge of microphone position errors, which may not be available

in practical scenarios. Investigating the application of SFI on an unes-CMA without

access to such information is a compelling research direction, which we aim to pursue

in the next chapter.





4 Generalized Sound Field

Interpolation with Unsupervised

Position Calibration

In this chapter, we introduce a novel method called Generalized Sound Field Inter-

polation (GSFI) designed to achieve rotation-robust beamforming using circular micro-

phone arrays (CMAs) with unknown microphone distributions. While the unequally

spaced SFI (unes-SFI) method presented in the previous chapter provides a robust so-

lution for non-uniform arrays, it relies on prior knowledge of the microphone positions.

This requirement limits its practical applicability in real-world scenarios where such

information is typically unavailable. To overcome this limitation, we propose a method

that integrates unsupervised calibration with the unes-SFI approach, enabling effec-

tive interpolation and beamforming for unequally spaced circular microphone arrays

(unes-CMAs) with unknown microphone positions.

Unsupervised calibration employs a novel iterative optimization technique to esti-

mate microphone positional errors without any pre-existing information about their

locations. This process iteratively adjusts the estimated positions, leveraging observed

data to converge toward an accurate representation of the microphone distribution on

the unes-CMA. Once the positional errors are determined, the unes-SFI framework can

reconstruct the target signal for the unes-CMA before rotation, effectively mitigating
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Figure 4.1: Conceptual diagram of GSFI. GSFI on an unes-CMA encompasses two

components: unsupervised calibration and unes-SFI.

the effects of rotation and microphone positioning errors.

Additionally, we reduce the computational complexity of the unsupervised calibra-

tion process by refining the cost function used during optimization. Simulation ex-

periments were conducted to assess the performance and robustness of the proposed

approach under various conditions. The results demonstrated that the method effec-

tively mitigates the adverse effects of unknown microphone placements. It achieved

substantial improvements in signal estimation before rotation and beamforming, out-

performing previous approaches and highlighting its potential for practical applications

in real-world scenarios.

4.1 Overview

The GSFI method is specifically designed to address the critical challenge of time-

variant Acoustic Transfer System (ATS) on a microphone array with an unknown

microphone distribution. As emphasized earlier, GSFI shares the same overarching

goal with the approaches introduced in Chapters 2 and 3: eliminating the need for

spatial filter re-estimation following the rotation of a CMA.
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As illustrated in Figure 4.1, the GSFI framework for an unes-CMA consists of two

primary components: unsupervised calibration and unes-SFI. At the heart of this

framework lies the concept of unsupervised calibration, illustrated in Figure 4.2, which

involves iterative optimization of the error vector, ϵ. This approach facilitates cali-

bration for each microphone using only the multichannel microphone signals, without

requiring any prior information about the microphone distribution.

Unsupervised calibration unfolds in three sequential steps:

• Compensate for the angular deviation: An initial set of error values is

assumed, and one channel signal is designated as the reference signal. The re-

maining (M − 1) channel signals are treated as pseudo-observations. Then we

compensate for the angular deviations between each microphone, whose signal is

chosen as a pseudo-observation, and its corresponding microphone on a virtual

equally spaced (M − 1)-channel CMA.

• Reference signal estimation via SFI: The signals from the virtual equally

spaced (M−1)-channel CMA are interpolated using SFI to estimate the reference

signal.

• Error vector optimization: The estimated reference signal is compared to the

actual reference signal, and the error vector, ϵ, is optimized by minimizing a

predefined cost function that quantifies the discrepancy between the two signals.

Once the error vector is obtained through this process, it can be seamlessly integrated

into the unes-SFI framework to reconstruct the before-rotation signal of the unes-CMA
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Figure 4.2: Conceptual diagram of unsupervised calibration. Unsupervised calibration

comprises three steps: compensate for the angular deviations, estimate the reference by

SFI, minimize the cost function to optimize e.

4.2 Formulation

In this section, we address the challenge of interpolation for a freely spaced unes-CMA

with an unknown distribution. Recognizing the physical constraints of practical appli-

cations, we assume that microphones cannot occupy identical positions simultaneously,

which ensures a valid array configuration. Unlike the unes-SFI method, which relies

on precise knowledge of each microphone’s position, our approach eliminates this re-

quirement. Instead, it operates with minimal prior information, necessitating only the

number of microphones in the array and the rotation angle, which can be readily deter-

mined [45,62,63], making GSFI more adaptable to real-world scenarios where detailed

positional information may not be available.

The observation obtained from the unes-CMA is represented by the same equation

as (3.1):

x(ϵ) =
[
x
(
2π·0
M

+ ϵ1
)
· · · x

(
2π(M−1)

M
+ ϵM

)]T
. (4.1)

Given the unknown actual microphone distribution, we initially assume a distribution
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for the unes-CMA. To facilitate this assumption, we introduce a known error vector,

denoted as e =
[
e1 · · · eM

]T
, which is initially set to a zero vector to substitute for

the unknown actual error angle vector ϵ. Consequently, using e, the initial position of

each microphone is determined as

P (e) =
[
0 + e1

2π·1
M

+ e2 · · · 2π(M−1)
M

+ eM

]T
. (4.2)

Subsequently, the process begins by partitioning the multichannel microphone sig-

nals into two distinct groups: the reference signal and the pseudo-observations. For

example, the signal from the first microphone channel is designated as the reference

signal, xref = x(0 + ϵ1), while the signals from the remaining M − 1 channels are

categorized as pseudo-observations, which are illustrated as

xpsd(ϵ) =
[
x
(
2π
M

+ ϵ2
)
· · · x

(
2π(M−1)

M
+ ϵM

)]T
. (4.3)

These pseudo-observations are treated as if they were recorded by an (M − 1)-channel

unes-CMA. Within this context, the initial step of unes-SFI is applied to xpsd(ϵ), using

(3.6) and the positional information P (e) to compensate for the positional errors of

this (M − 1)-channel unes-CMA. As a result, the signal corresponding to a virtual

(M − 1)-channel es-CMA, denoted by

xpsd(0) =
[
x(0) · · · x

(
2π(M−2)

M−1

)]T
, (4.4)

can be computed as

xpsd(0) = UM−1(e\e1)
−1xpsd(ϵ), (4.5)

where e\e1 denotes a vector that excludes e1 from e, and the compensation matrix
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UM−1(e\e1) is calculated as

UM−1(e\e1) =


v1

(
2π·1
M

+ e2 − 0
)

...

vM−1

(
2π(M−1)

M
+ eM − 2π(M−2)

M−1

)
 . (4.6)

Here, vm(ϵn) ∈ C1×(M−1) represents the mth row of the rotation matrix UM−1(ϵn) ∈

C(M−1)×(M−1).

Upon acquiring the equally spaced signal xpsd(0), conventional SFI can be employed

to estimate the reference signal, expressed as

x̂ref = v1(e1)xpsd(0). (4.7)

It is crucial to underscore that in this method, the computation of UM−1(e\e1) and

v1(e1) is based on the assumed error vector e, rather than the actual error vector

ϵ. This distinction arises because e is the only accessible variable, while ϵ remains

unknown.

The cost function can be defined as the difference between x̂ref and xref , expressed

as follows:

L1(e) = 10 log10

( ∑
t∈{1,...,T}
f∈{1,...,F}

|x̂ref,t,f − xref,t,f |2
)
, (4.8)

where t and f denote the indices for the time frame and frequency bin, respectively,

while T and F represent the total number of time frames and frequency bands, respec-

tively.

Subsequently, we designate the signal from the second channel, x(2π/M + ϵ2), as

the reference and apply the same method described earlier to compute a new cost
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function, L2(e). This process is repeated for all M channels, resulting in M individual

cost functions denoted as L1(e),L2(e), . . . ,LM(e), each corresponding to a different

reference signal. By aggregating these cost functions, we construct a composite cost

function

L(e) =
M∑
i=1

Li(e). (4.9)

Although L(e) does not lend itself to a closed-form solution, it is differentiable with

respect to e, enabling the application of backpropagation to estimate the error vector

ϵ. To minimize L(e), we utilize gradient descent with the Adam optimizer [81] for

iterative optimization:

ϵ̂ = argmin
e
L(e). (4.10)

Despite the nonconvex nature of (4.9), which allows for the existence of multiple local

minima, the function possesses a global minimum. Achieving this global minimum

through gradient descent can be challenging; the optimization process typically con-

verges to a local minimum that, while not the absolute lowest point, still demonstrates

effective performance.

Notably, this calibration approach avoids the use of deep neural networks. Instead, it

relies solely on framewise observations to optimize e. Once the estimated error vector

ϵ̂ is determined, the unsupervised calibration process is concluded, and the previously

described unes-SFI can be employed to compute the ∆-rad-rotated signal:

x(∆ + ϵ) = UM(ϵ̂)UM(∆)UM(ϵ̂)−1x(ϵ). (4.11)

A key practical advantage of this method is its adaptability to real-world conditions.
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Since the non-uniform microphone distribution of an unes-CMA is typically static, the

error vector remains unique to the array. Consequently, unsupervised calibration is

required only once. The resulting estimated error vector ϵ̂ can be reused consistently,

eliminating the need for further optimization, even under changing environmental con-

ditions.

Finally, this process enables accurate estimation of the sound field as it would have

been recorded in its original, before-rotation state, without requiring the exact value

of ϵ.

4.3 Modification of cost functions

As previously discussed, calculating the final cost function L(e) requires the compu-

tation of M individual cost functions, denoted as Li(e). For each Li(e), the computa-

tional complexity is O(M2 · T · F ). Thus, the overall time complexity for computing

L(e) is O(M3 · T · F ).

In practical scenarios, the unsupervised calibration process, which estimates the error

vector ϵ̂, is a one-time operation. Once ϵ̂ is derived, the iterative optimization does

not need to be repeated, minimizing the impact of the computational cost associated

with calculating L(e). This ensures that the relatively high computational complexity

does not adversely affect the real-time applicability of the GSFI method. However,

there remains significant potential for further reducing the computational burden of

L(e). Accelerating the estimation of the error vector would enhance the practicality

and efficiency of the GSFI method in real-world applications.

In this subsection, we focus on the efforts and advancements made to reduce the

computational complexity of the cost function. Since the complexity of L(e) is pri-

marily influenced by two factors—M3 (related to the number of microphones) and
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T ·F (related to the total number of time frames and frequency bins)—we address the

reduction in computational complexity from both of these perspectives.

4.3.1 Simplification of the calculation of L(e)

The computational complexity of L(e), O(M3 · T · F ), clearly highlights a major

drawback: as the number of microphones M increases, the computational cost grows

cubically, which becomes impractical for arrays with a large number of microphones.

However, by carefully analyzing the structure of the cost functions, we can identify

opportunities to reduce this complexity while maintaining the accuracy of the opti-

mization process.

The computation of each individual cost function Li(e) involves a complexity of

O(M2 · T · F ), where the O(M2) component is dominated by matrix multiplication

operations. For a given microphone array, where the number of microphones M is

fixed, this component cannot be further reduced. Therefore, if the need to calculate

all M cost functions could be bypassed, the overall computational complexity for L(e)

can reach a theoretical minimum value of O(M2 · T · F ).

During the iterative minimization of the final cost function L(e) using the gradient

descent method, each individual cost function Li(e) independently converges towards

its own local minimum. To reduce the computational burden, we propose selecting

only one of the M cost functions as the final cost function. This can be achieved by

identifying the most representative cost function based on its initial value and using it

for the entire optimization process, that is,

L(e) = Li(e), i = argmin
i∈{1,...,M}

Li(0), (4.12)
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where e is initialized to the zero vector. Once the representative cost function is

selected, it is used exclusively throughout the iterative optimization process. This ap-

proach eliminates the need to compute all M cost functions at every iteration, achieved

without compromising the accuracy or integrity of the unsupervised calibration process

and significantly reducing the computational complexity of the overall optimization.

4.3.2 Simplification of the calculation of Li(e)

In the aforementioned analysis, we highlighted that the value of M in the compu-

tational complexity of Li(e) cannot be altered, and due to the matrix multiplication

operation, the computational complexity of O(M2) is also inevitable. Therefore, to

optimize the computational complexity of Li(e), we must focus on reducing the values

of T (the total number of time frames) and F (the total number of frequency bins). As

highlighted, many time–frequency (TF) components in a sound signal—such as silent

segments in the time domain or low-power frequency components—do not contribute

significantly to the cost function computation. Thus, leveraging a strategy that elimi-

nates these irrelevant components can substantially reduce computational requirements

without compromising performance.

To achieve this reduction, a binary mask B is applied to the TF representation of

the reference signal. This binary mask compresses the TF matrix by selecting only the

most relevant components based on a predefined threshold. The binary mask B can

be defined as:

B(t, f) =


1, if |xref,t,f | ≥ threshold

0, otherwise.

(4.13)
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Therefore, applying B, components with magnitudes below the threshold are set to

zero, while those above the threshold are retained. After sparsification, the calculation

of the individual cost function Li(e) is confined to the reduced set of TF components.

This significantly decreases the dimensions of the TF matrix used in the computation.

The revised cost function is given by:

Li(e) = 10 log10

( ∑
(t,f)∈TF

|x̂ref,t,f − xref,t,f |2
)
, (4.14)

where ∀(t, f) ∈ TF, B(t, f) = 1.

Here, TF is an ordered pair set composed of all TF index pairs (t, f) retained after

sparsification (B(t, f) = 1).

By applying the binary mask B, the number of TF components involved in the

computation is reduced from T · F to |TF|, where |TF| ≪ T · F . Consequently, the

computational complexity of Li(e) (or L(e)) becomes O(M2 · |TF|). This is substan-

tially smaller than the original complexity, O(M2 · T ·F ), especially for sparse signals,

resulting in faster computations for the cost function.

4.4 Simulated experimental evaluation

4.4.1 Setup

Dataset and preprocessing

We use the same methodology as described in Chapter 3 to construct the experimen-

tal dataset. From the SiSEC database [72], which offers high-quality speech recordings

sampled at a precision of 16 kHz, we curated a balanced dataset consisting of eight
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distinct speech signals—equally divided between female and male speakers. To emu-

late the complexities of a reverberant environment, these speech signals were convolved

with room impulse responses (RIRs), following the same approach as in Chapter 3 and

enabling us to generate microphone signals with a reverberation time of approximately

100ms. For a thorough analysis within the TF domain, we applied the STFT, using

a Blackman window of 64ms length with a 1/8 overlap. To rigorously evaluate the

efficacy of the proposed GSFI technique on unes-CMAs, we utilized an M -channel

unes-CMA with a radius of 0.05m placed within a noise-free room to record sound

signals.

Simulated experimental setup for unes-CMAs

To emulate the inherent non-uniform distribution in practical scenarios, a stochastic

element denoted as ωi(°), i ∈ {0, ...,M − 1}, was artificially imposed on each micro-

phone location. This variable ωi adhered to a Gaussian distribution characterized by

a mean of zero and a standard deviation equivalent to
√
200°. Moreover, an addi-

tional layer of complexity was added by including an unknown error, ϵi(°), associated

with each microphone placement, rendering the actual distribution unspecified. It is

pertinent to note that during the previous unes-SFI without the newly proposed unsu-

pervised calibration procedure, we could only assume ωi to represent the angular error

because only ωi was available and ϵi was unknown to us. However, the genuine angu-

lar error encompassed ωi + ϵi. We hypothesized that such mismatches might impair

the performance of unes-SFI, yet the proposed GSFI method potentially alleviates the

detrimental impact of these unknown mismatches. The unknown mismatch error ϵi

also conformed to a Gaussian distribution, with a mean of zero and variances system-

atically spanning from (0°)2 to (
√
500°)2 in discrete steps of (

√
10°)2. It is crucial to
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Figure 4.3: Simulated environment during unsupervised calibration. One of the speech

signals (female) is placed at the position of 0°, with the microphone array located at the

center of the circle.

emphasize that all introduced errors were independently and identically distributed,

ensuring statistical integrity. To fortify the robustness of our analytical framework, for

every specified variance within the Gaussian distribution, a comprehensive set of 100

random samples was generated, thereby guaranteeing a rigorous and reliable statistical

evaluation.

As mentioned earlier, the advantage of GSFI lies in the fact that once the estimated

error vector is obtained through unsupervised calibration, there is no need for re-

calibration even if the acoustic environment changes, such as a change in sound source

signal or the relocation of the microphone array and sound source. In our experiments,
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Figure 4.4: Simulated environment for evaluation. The remaining seven speech signals

are positioned at 30°, . . . , 210°, respectively. There are four optional positions of the

microphone array, located at 120°, . . . , 210°. In the experiments to evaluate the per-

formance of GSFI, one speech signal and one position of the microphone array are

selected each time, resulting in 28 combinations. In the experiments to evaluate the

performance of source enhancement, two speech signals are chosen and mixed as the

observed signal, with the microphone array positioned at 180°.

we selected a single speech signal from the dataset for unsupervised calibration. Ini-

tially, the sound field was simulated with the microphone array positioned as shown in

Figure 4.3. This setup was used to perform unsupervised calibration, thereby obtain-

ing the estimated error vector. To evaluate the performance of the interpolation and

the robustness of our method, we altered the positions of both the microphone array

and the sound source after the initial calibration. Despite these changes, the interpo-
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lation process utilized the error vector estimated from the initial placement depicted

in Figure 4.3. The new positions of the microphone array and sound source during

interpolation are illustrated in Figure 4.4. The simulation process was structured as

follows:

• Initially, the sound field was simulated with the microphone array positioned, as

shown in Figure 4.3, and a single speech signal was used to perform unsupervised

calibration, yielding the estimated error vector.

• Subsequently, the microphone array and sound source were relocated to one of

the new positions, as illustrated in Figure 4.4.

• Finally, at these new positions, a new sound field was simulated after the mi-

crophone array rotated by ∆ rads. This newly simulated sound field was then

used to estimate the observation signals as if they were captured at the original

reference position before rotation, with the rotational angle ϕ = ∆π/180° being

a known value.

Evaluation criteria

In our initial experiments to evaluate the performance of GSFI on unes-CMAs, the

experiments were conducted in a controlled scenario involving a single sound source,

ensuring that no sound sources were mixed. The performance assessment was based

on the same metric as introduced in Chapter 3, signal-to-error ratio (SER). We varied

the number of microphones, M , from 4 to 7 to examine the impact of array size on the

performance of GSFI. Additionally, we manipulated the rotation angle ϕ to simulate

different array orientations and assess the robustness of the method under varying

conditions.
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Figure 4.5: Spectrograms of signals interpolated using the previous unes-SFI method

and the newly proposed GSFI method, alongside the spectrogram of the target signal

expected from interpolation.

In the second set of experiments, we aimed to compare the source enhancement

performance characteristics of various methods using the Minimum Power Distortion-

less Response (MPDR) beamformer. The evaluation metrics remained consistent with

Chapter 3 and were based on the source-to-distortion ratio (SDR) and the source-to-

interference ratio (SIR). To calculate the filter of the beamformer, we adopted the same

approach as described in Chapter 3, relying on two key components: the covariance

matrix of the interference signal and the relative transfer function (RTF), which was

derived using the RIR from the target source to each microphone. For these experi-

ments, we selected two sound sources randomly from Figure 4.4 and mixed them into

the observation signal. The angular separation between the two sources was varied

systematically at intervals of 30°, 60°, . . . , 180°.

4.4.2 Effectiveness of the proposed method

Initially, we focus on the scenario illustrated in Fig. 4.3. Fig. 4.5 presents an example

of direct acoustic results obtained through interpolation, including spectrograms of

signals interpolated using the previous unes-SFI method and the newly proposed GSFI

method, alongside the spectrogram of the target signal expected from interpolation.
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In this case, the number of microphones is M = 7, and the rotation angle is 30°.

To better highlight the differences among the spectrograms, we primarily examine

interpolation results within the 0–3 kHz frequency range. As shown in Fig. 4.5, the

interpolated signal obtained using our proposed GSFI method with unsupervised cali-

bration closely matches the target signal, exhibiting minimal differences. In contrast,

the interpolation results from the previous unes-SFI method without calibration exhibit

noticeable discrepancies in the spectrogram compared to the target signal, particularly

at high frequencies. Additionally, the previous interpolation method introduces error

noise into the interpolated signal. These direct acoustic results clearly demonstrate

the significant advantages of our GSFI method in accurately reconstructing the before-

rotation signal, further validating its effectiveness over the previous method.

4.4.3 Comparison between the cost functions (4.9) and (4.12)

In this experiment, we evaluated the impact of the two cost functions introduced

in Sections 4.2 and Section 4.3 on the performance of GSFI. In this comparison, we

aimed to determine how these cost functions affect the efficiency and effectiveness of

unsupervised calibration. For this experiment, we focused on a scenario where the

unes-CMA and the sound source are positioned as depicted in Figure 4.3. Figure 4.6

presents some examples of the variations in the values of the two cost functions during

the iterative optimization of unsupervised calibration with M = 5 and 6. Both cost

functions exhibit similar rates of change, demonstrating that their convergence behavior

is nearly identical. After an equivalent number of iterations, both cost functions reach

a local minimum. However, a key distinction lies in the computational complexity

associated with each cost function. Calculating the cost functions (4.12) and (4.14)

is considerably less computationally complex than calculating the cost functions (4.8)
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Figure 4.6: Variation in the values of the two cost functions during the iterative opti-

mization process of unsupervised calibration.

and (4.9). This reduction in complexity translates to a significant improvement in

the execution speed of unsupervised calibration when the improved cost function is

employed. It is important to note, as illustrated in Figure 4.6, that there are differences

in the cost function values and local minima between cost functions (4.12) and (4.9).

These discrepancies arise because, in cost function (4.12), we simplified the formulation

by avoiding the aggregation of multiple cost functions and reducing the dimensionality

of the matrix involved in the computation. Consequently, cost function (4.12) yields a

lower final value than cost function (4.9). However, a lower value of cost function (4.12)

than of (4.9) does not necessarily indicate superior optimization performance. The

reduction in cost function value is a result of simplifications made during calculation,

rather than an improvement in the iterative optimization results.

Building upon our previous examination of cost functions, we now turn to their

impact on interpolation performance. We conducted this experiment by varying the

rotation angle ϕ from 10° to 40° and adjusting the number of microphones M from

5 to 6. For each configuration, we used a standard deviation of 10° for the unknown

mismatch ϵi. Figure 4.7 displays the mean SER across all M channels, providing a
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Figure 4.7: SER results for two cost functions with different M and ϕ values.

comprehensive assessment of interpolation accuracy. The results demonstrate that

the interpolation performance is nearly identical for both cost functions across the

specified ranges of rotation angles and microphone counts. Despite the difference in

computational complexity, the SER outcomes remain consistent, indicating that the

simplified cost functions ((4.12) and (4.14)) do not compromise accuracy. Given the

marked improvement in computational speed and the negligible performance difference,

it becomes clear that the improved cost function is preferable for practical applications.

Therefore, for all subsequent experiments, we adopted the improved cost function.

Notably, higher-frequency components pose a challenge. To streamline the analysis

and focus on the most critical performance aspects, we limited the frequency range to

0–1 kHz for SER evaluation. The SERs were averaged in decibels across all subsequent

experiments to provide a clear and concise comparison.
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Figure 4.8: Boxplots of the relationship between the variance of the unknown mismatch

ϵi and the SER improvement at frequencies up to 1 kHz relative to the cases without

interpolation.

4.4.4 Robustness to the variance of angle error

To assess the robustness of our proposed method, we investigated the relationship

between the variance of the unknown mismatch ϵi and the SER improvement. The SER

improvement was used to measure the enhancement achieved through signal processing,

with the baseline SER calculated by comparing the uninterpolated signal after rotation

with the target signal before rotation. In this analysis, we focused on scenarios with

five and six microphones (M = 5 and M = 6) and a rotation angle (ϕ) of 20°, with the

unes-CMA and sound source positioned as depicted in Figure 4.3.

Figure 4.8 illustrates the relationship between the variance of the unknown mis-

match ϵi and the SER improvement. Each box plot in Figure 4.8 represents the mean
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SER improvement over M channels for each sample, totaling 100 data points per box.

The results indicate that as the variance of the unknown mismatches increases, the

SER improvement provided by the previous unes-SFI method significantly deteriorates

from approximately 13 dB to as low as 5 dB. Conversely, our proposed GSFI method

consistently demonstrates superior interpolation performance, achieving a stable SER

improvement of 13 dB, even with large unknown mismatches. The findings underscore

the limitations of applying the previous unes-SFI method directly to an unes-CMA

with an unknown microphone distribution. In contrast, our proposed GSFI method

exhibits robust performance under these challenging conditions, highlighting its prac-

tical advantages and effectiveness in handling substantial unknown mismatches.

4.4.5 Channelwise SER improvements

We analyzed the channelwise SER improvements across various scenarios involving

different M and ϕ values, with the standard deviation of the mismatch set to 10°. The

positions of the sound sources and unes-CMAs were varied, as depicted in Figure 4.4.

Figure 4.9 presents the mean SER improvement relative to cases without interpolation

calculated over M channels. Each box plot contains 28 samples, representing the mean

SER improvement of seven sound sources at four distinct unes-CMA locations.

The results clearly indicate that our proposed method consistently delivers greater

SER improvements than the previous unes-SFI method in all evaluated scenarios.

Specifically, the minimum improvement occurs at M = 4 with an increase of 3 dB,

while the maximum improvement is observed at M = 7, reaching approximately 15 dB.

As expected, increasing M in the proposed method enhances performance owing to the

higher spatial sampling rate. However, in the previous unes-SFI method, adding more

microphones does not always lead to improved SER and can even degrade performance.
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Figure 4.9: Boxplots of mean SER improvement at frequencies up to 1 kHz across

various scenarios with different M and ϕ values.

This degradation is observed when M is increased from 4 to 5 and from 6 to 7, likely

due to the introduction of additional errors in the compensation matrixUM (ϵ). In such

cases, the advantages of a higher spatial sampling rate are negated by the detrimental

effects of these errors. We also assessed the performance of the unes-SFI method under

conditions where the mismatch ϵi is known. Although the proposed method exhib-

ited a slightly smaller improvement in such scenarios, the performance reduction was

minimal and within acceptable limits, with decreases as small as 1 dB in some cases,

underscoring the robustness of our method even in the absence of prior information.

4.4.6 Effect of the signal duration on the unsupervised cali-

bration

In practical applications, although unsupervised calibration is only performed once

and does not significantly hinder real-time processing, there remains a need to expedite

the estimation of the error vector. Additionally, online beamforming typically relies

on very short signal segments to ensure timely responses. Consequently, it is desirable

for unsupervised calibration to accurately estimate the error vector even when using

these shorter segments. In our previous experiments, a 10 s sound signal was employed
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Figure 4.10: Relationship between the duration of the sound signal used for calibration

and the channelwise SER improvement across various scenarios with different M and

ϕ values.

for unsupervised calibration. Here, we explored the effect of signal segment length on

the accuracy and efficiency of unsupervised calibration using sound signals of varying

lengths: 10 s, 5 s, 1 s, 500ms, and 100ms. The estimated error vectors obtained from

these calibrations were then used for the interpolation and the estimation of the signal

before rotation. Figure 4.10 presents the relationship between the duration of the

sound signal used for calibration and the channelwise SER improvement for scenarios

with M = 5 and 6 and ϕ ranging from 10° to 40°, with the unes-CMA and sound

source positioned as illustrated in Figure 4.4. In the previous unes-SFI, there is no

calibration process; therefore, the duration of the sound signal used for calibration is

0 s. The results indicate that the duration of the signal has negligible impact on the

performance of unsupervised calibration and subsequent interpolation. Signal segments

of varying lengths yielded fluctuations in SER improvement of less than 1 dB. Using

shorter signals does not lead to significantly worse results, demonstrating the feasibility

of the proposed method for real-time processing.
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Table 4.1: Abbreviations for spectrograms from different evaluation settings

Spectrograms from different Status of evaluation conditions

evaluation settings B R I K C

B0: No beamforming 0 0 0 0 0

R0: No rotation 1 0 0 0 0

I0: No interpolation 1 1 0 0 0

C0: unes-SFI without calibration 1 1 1 0 0

K1: unes-SFI with known mismatches 1 1 1 1 0

C1: proposed method with calibration 1 1 1 0 1

4.4.7 Results of source enhancement with batch processing

In this experiment, we assessed the source enhancement capabilities using the MPDR

beamformer under various conditions. The experiment was conducted with a fixed

number of microphones, M = 6, whereas the rotation angle ϕ was varied at 10°, 20°,

30°, and 40°. Initially, the filter weight w for the MPDR beamformer was calculated

using the RTF and the multichannel STFT spectrogram derived from the unes-CMA

situated at its original, unrotated position. This scenario, denoted as R0, serves as the

benchmark, as it employs true, uninterpolated signals for the beamformer. For clarity

and consistency, we adopt a set of abbreviations to denote the evaluation conditions

when naming spectrograms from different methods, similar to the naming convention

used in Chapter 3: B represents Beamforming, R for Rotation, I for Interpolation, K

for Known Mismatches, C for Calibration, Index 0 for off, and Index 1 for On.

Therefore, the various spectrograms from different evaluation settings, which were

then processed using the precomputed MPDR beamformer weight w to generate the

estimated target signal, are summarized in the Table 4.1. For a baseline comparison, we
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Figure 4.11: Boxplots of SDR and SIR obtained by MPDR beamformer in six situa-

tions: unprocessed (B0), no rotation of the CMA (R0), without interpolation when the

CMA rotates (I0), with previous unes-SFI without calibration when the CMA rotates

(C0), previous unes-SFI with known mismatches when the CMA rotates (K1), and our

proposed method when CMA rotates (C1).

included an unprocessed scenario (B0), where the raw microphone signal was incorrectly

treated as the target signal, alongside R0.

The SDR and SIR outcomes for various scenarios, with the mismatch standard devi-

ation set to 10°, are depicted in Figure 4.11. Predictably, B0 demonstrates the lowest

SDR and SIR (0 dB), whereas R0 achieves the highest source enhancement, attributed

to the time-invariant nature of the ATS. The proposed method (C1) generally out-

performs both the non-interpolated case (I0) and the previous interpolation technique

(C0) by approximately 4 dB and 7 dB, respectively, suggesting its capability to miti-

gate the performance degradation associated with unknown microphone distributions.

The performance difference between K1 and C1 remains marginal and acceptable, with

the smallest difference being only 1 dB. These findings indicate that our proposed

method with unsupervised calibration maintains robustness to unes-CMA rotations

and enhances array signal processing performance, even when the precise microphone
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distribution is unknown.

4.4.8 Results of source enhancement with online processing

In this experiment, we examined the application of the GSFI technique to online

beamforming, focusing on scenarios where the ATS was subjected to continuous, dy-

namic changes. As described in Section 2.3.3, we also used a smoothing factor α to

facilitate the online updating of the spatial covariance matrix (SCM) and the Sherman–

Morrison formula to reduce the computational complexity involved in inverting the

covariance matrix within the MPDR beamforming framework.

The algorithm and experimental conditions used in this study mirrored those from

Section 3.4.4. We used two source signals, each with a duration of 40 s, positioned at

angles of 30° and 210°, and one microphone array positioned at an angle of 180°, as

depicted in Figure 4.4. The frame length was set to 256ms, and a segmental SDR at

intervals above 1 s was employed to evaluate source enhancement performance. Un-

supervised calibration was performed using only the first frame (256ms) of the sound

signal. The smoothing factor α was empirically set to 0.99, which yielded the highest

segmental SDR. The inversion of the covariance matrix V̂ −1
f was initialized using the

first 10 frames. During the experiment, the unes-CMA underwent two rotations: the

first rotation from 0° to 20° began at 10 s, and the second rotation from 20° to 40°

started at 30 s. These rotations were gradual, occurring at a constant speed of 0.01°

per time sample (equivalent to 160° per second), simulating typical human or humanoid

robot rotation speeds. Observations were generated by concatenating the observations

of the unes-CMA at various angles.

Figure 4.12 presents the segmental SDRs for M = 6. As expected, the R0 scenario,

where the unes-CMA did not rotate, consistently achieved the highest source enhance-
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Figure 4.12: Segmental SDR every 1 s with M = 6 on an unes-CMA, where the two

vertical dashed lines indicate the time points when the rotation started: 0°⇒ 20°⇒ 40°.
B0 shows the mixture itself, R0 shows the case where no rotation occurs, I0 shows online

processing without interpolation, C0 and K1 respectively show online processing using

previous unes-SFI without calibration and with known mismatches, C1 shows online

processing with the newly proposed method, and C1f shows online processing with the

newly proposed method and the frozen SCM.

ment performance. Contrary to initial expectations, the B0 method does not yield the

lowest SDRs. The C0 method exhibited the poorest performance at about −5 dB, often

worse than the I0 method. These findings indicate that the previous SFI technique is

ineffective for an unes-CMA with an unknown microphone distribution in online beam-

forming scenarios. In contrast, our proposed method (C1), which achieved an average

improvement of 8 dB in SDR score, demonstrated an improved performance compared

with C0 and I0. Despite some instances where the SDRs of our proposed method (C1)

occasionally approach those of the B0 scenario, the overall trend indicates that our

method can still provide an improvement to some extent.

During online beamforming, we applied the signal processed by GSFI to update

the SCM online. However, estimation errors in the GSFI-estimated signal led to in-

accuracies in the SCM, which likely contributed to the inaccurate calculation of the
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filter of the beamformer and the observed performance being similar to B0. We ad-

ditionally introduced a method, where the SCM was iteratively updated only before

the unes-CMA rotation. Once the unes-CMA rotated, further updates to the SCM

were halted. Subsequently, the update process for the filter of the beamformer was

also ceased owing to the frozen SCM (fSCM). The results obtained from this method,

denoted as C1f, revealed a significant improvement of 4 dB in SDR compared to C1.

By avoiding the introduction of inaccurate SCM calculations, our proposed method

no longer shows performance similar to B0. This underscores the capability of the

proposed GSFI method with unsupervised calibration for online beamforming.

4.5 Conclusion

In this chapter, we introduced the GSFI method to achieve rotation-robust beam-

forming for unes-CMAs with unknown microphone distributions. At the core of GSFI

is an innovative unsupervised calibration framework, which estimates the positional

errors of microphones without requiring any prior knowledge of their locations. This

calibration process determines the microphone distribution in an unsupervised manner.

Once the positional errors are estimated, GSFI incorporates the previously established

unes-SFI method to reconstruct the target signal of the unes-CMA in its before-rotation

state.

Simulation results validated the robustness of GSFI against unknown microphone

distributions and demonstrated its strong performance in array signal processing tasks.

First, we showed that the proposed method enables accurate signal estimation even

in the absence of prior knowledge about microphone distributions. Furthermore, we

demonstrated that the improved cost function achieves nearly undiminished interpola-

tion performance while significantly reducing computational complexity.
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In addition, GSFI maintains stable signal estimation performance compared to pre-

vious methods across various experimental conditions. The duration of the signal used

for unsupervised calibration was also found to have minimal impact on both the cal-

ibration process and subsequent interpolation accuracy. This finding highlights the

feasibility of applying the proposed method to real-time scenarios, as shorter signal

durations do not substantially degrade performance.

Finally, the proposed method consistently improved performance in downstream

source enhancement task, further underscoring its practical utility.

Nevertheless, the current method is limited to circular arrays. Extending GSFI to

nearly circular microphone arrays (NCMAs), which approximate the shape of the robot

head rather than a perfect circle, presents an intriguing and practical research direction.

This extension will be explored further in the next chapter.





5 Two-stage Generalized Sound

Field Interpolation on a Nearly

Circular Microphone Array

In this chapter, we address a more complex scenario involving head-mounted mi-

crophone arrays. Given the need to conform to the shape of the robot head, and the

fact that the head is not a perfect sphere, maintaining a standard circular shape for

head-mounted circular microphone arrays (CMAs) becomes challenging. As a result,

nearly-circular microphone arrays (NCMAs) are more commonly used in the applica-

tion scenarios discussed in this thesis.

Building on the Generalized Sound Field Interpolation (GSFI) method introduced

in Chapter 4, we extend the approach to accommodate NCMAs. In this chapter, we

explore how GSFI can be applied to NCMAs and present simulation experiments that

validate the feasibility of interpolation in these non-ideal array configurations.

5.1 Overview

Up to this point, we have focused exclusively on CMAs. In techniques such as sound

field interpolation (SFI), unequally spaced sound field interpolation (unes-SFI), and the

GSFI method for an unes-CMA mentioned in the previous chapters, the microphone
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array is assumed to be circular. However, in real-world applications, since the robot

head is not a perfect sphere, maintaining a strictly circular array when worn on the head

is challenging. For an NCMA, previous SFI and unes-SFI techniques cannot be directly

applied as their effectiveness will be severely impacted, and it is also theoretically

inappropriate to directly use unsupervised calibration because the NCMA does not

exhibit the periodicity and other properties of a CMA.

Given the prevalence of NCMAs over strictly circular ones, we propose a new frame-

work to address the challenges associated with their non-ideal geometry. This frame-

work is built upon two main ideas:

• Simplify the problem on the NCMA: To simplify the signal processing

challenges associated with an NCMA and leverage the methods developed for

CMAs in previous chapters, we first construct a virtual pseudo-CMA (pCMA).

This pCMA is designed to approximate the NCMA by ensuring that the signals it

receives closely resemble those captured by the NCMA. By doing so, the pCMA

serves as a functional substitute for the NCMA, allowing us to transform the

problem of interpolation on an NCMA into the more familiar CMA framework.

• Two-stage approach between pseudo-CMAs: When the microphone array

rotates, the correspondence between the pCMA and the NCMA changes. Specif-

ically, the pCMA constructed to replace the before-rotation NCMA differs from

the one required to represent the after-rotation NCMA. Consequently, construct-

ing a single pCMA is insufficient to accurately estimate the signals of the NCMA

in its before-rotation state. To address this issue, we adopt a two-stage approach:

the states of the NCMA before and after rotation are separately mapped to two

distinct pCMAs. These pCMAs are then used collaboratively to estimate the

signals of the NCMA in its original, before-rotation position.
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These two ideas ensure that the challenges posed by the NCMA’s non-circular ge-

ometry and rotational variations are effectively managed, thereby extending the appli-

cability of the GSFI method to nearly-circular arrays.

5.2 Simplification of the NCMA problem to a CMA

problem

In this section, we describe how the NCMA problem can be simplified into a CMA

problem. This is achieved by constructing a pCMA based on the NCMA and deter-

mining the optimal microphone distribution for the pCMA. The goal is to ensure that

the signals received by the pCMA closely approximate those received by the NCMA,

thereby enabling the pCMA to serve as an effective substitute for the NCMA. This

transformation allows us to apply the existing CMA-based methods to address chal-

lenges associated with NCMAs.

5.2.1 How to construct a pseudo-CMA

As previously mentioned, for a unes-CMA, the microphone positions are initially

unknown. However, since all microphones are constrained to lie on the same circle,

unsupervised calibration can be employed to estimate the angular error of each micro-

phone, thereby determining their precise positions on the circle.

In contrast, an NCMA introduces a more complex challenge. The microphones in

an NCMA can be considered as being distributed across multiple concentric circles,

each with the same center but different radii. The rotational movement in this context

pertains solely to rotation around the common center of these concentric circles, which
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we designate as the center of the NCMA. This nearly circular distribution disrupts the

periodicity inherent in circular arrays, making it difficult to directly estimate accurate

angular errors through unsupervised calibration.

To address this issue, we construct a pCMA for substituting the NCMA according

to the following ideas:

• Transforming the NCMA into a pCMA: The microphones on the NCMA

are hypothetically moved radially such that they are positioned on a common

circle, forming a pCMA. This transformation standardizes the radial distances

of the microphones to enable the calibration process.

• Signal consistency in the transformation: Due to this radial transformation,

the signals received by the microphones on the pCMA evidently differ from those

received on the original NCMA. Thus, the challenge lies in determining the

microphone distribution on the pCMA such that the signals they receive are

approximately equivalent to those received by the NCMA.

• Determination of the distribution of microphones on the pCMA: This

step involves optimizing the angular positions on the pCMA to minimize the

discrepancy between the signals observed on the NCMA and those hypothesized

for the pCMA. A calibration process can be adapted to estimate the hypothetical

microphone positions on the pCMA that would yield signals closely resembling

those captured by the NCMA.
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5.2.2 How to determine the distribution of microphones on

the pCMA

To determine a distribution of microphones on the pCMA such that the signal it

receives matches that of the original NCMA, we adopt the unsupervised calibration for

the pCMA.

The goal is to simplify the complex challenge of processing an NCMA into the more

tractable task of processing a CMA. Since the signals received on the pCMA are un-

known, we cannot directly minimize the discrepancy between the signals of the NCMA

and the pCMA in a supervised manner. Instead, we hypothesize that the pCMA

already receives the same signal as the NCMA, denoted by xNCMA. This assumption

allows us to apply unsupervised calibration to estimate the distribution of microphones

on the pCMA, similar to the approach described in Chapter 4.

Although applying unsupervised calibration directly to the NCMA is unreasonable,

we rationalize the use of unsupervised calibration on xNCMA by indirectly applying it

through a pCMA, which virtually aligns all microphones of the NCMA onto a common

circle.

5.2.3 Details of pCMA construction

During unsupervised calibration, a single microphone on the pCMA is chosen as

the reference microphone. The signal for this reference microphone is estimated us-

ing signals from the other microphones. Since we assume the signal received by the

pCMA matches xNCMA, this process is equivalent to estimating the reference signal on

the NCMA using signals from microphones positioned on different concentric circles.

Therefore, the placement of microphones on the pCMA follows a logical and consistent
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approach:

• The circle on which the pCMA resides coincides with that of the reference micro-

phone, implying that the reference microphone is retained in its original position.

• The remaining microphones are radially moved to align with the reference mi-

crophone’s circle, effectively collapsing the NCMA into a single circular array.

This transformation ensures that the pCMA captures the original spatial characteristics

of the NCMA while simplifying the structure for subsequent processing.

5.2.4 Details of unsupervised calibration on the pCMA

During optimization, the reference channel is consistently chosen as the microphone

channel corresponding to the smallest initial cost function value, as determined by

(4.12). This ensures that:

• The pCMA’s defining circle remains fixed throughout the iterative optimization

process.

• The iterative updates during unsupervised calibration are applied relative to a

stable spatial framework.

5.2.5 Summary

Figure 5.1 illustrates the detailed process for constructing the pCMA and determin-

ing the microphone distribution:

1. Assume the pCMA receives the same signal as the NCMA (xNCMA).
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Figure 5.1: Conceptual diagram of how to simplify an NCMA to a CMA. (a) NCMA

on which each microphone can be considered positioned on different concentric circles.

(b) If taking the first channel as the reference channel, the pCMA can be conceptu-

ally obtained by radially moving the microphones from other concentric circles to the

circle of the reference channel. (c) After unsupervised calibration, the distribution of

microphones on the pCMA that would result if the signals received by the NCMA were

captured by the pCMA is determined.

2. Taking one channel as the reference channel, consider that the pCMA is concep-

tually obtained by radially moving the microphones from other concentric circles

to the circle of the reference channel.

3. Apply unsupervised calibration using xNCMA on the pCMA to estimate the mi-

crophone positions, iteratively optimizing the cost function while maintaining

consistency in the reference channel.

This approach effectively reduces the complexity of processing an NCMA by lever-

aging the spatial simplicity of a pCMA while preserving the integrity of the original

signals. Through this approach, we effectively address the challenges posed by the

nearly circular distribution of microphones in an NCMA. By transforming the NCMA

into a pCMA and leveraging unsupervised calibration, we can determine a suitable

configuration that preserves signal consistency, enabling further processing such as SFI

and beamforming.
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5.3 Generalized sound field interpolation on an NCMA

While the previous section demonstrated how to simplify the NCMA problem into

a CMA problem using a pCMA, relying solely on a single pCMA introduces several

limitations that hinder accurate signal reconstruction on the NCMA. In this section,

we will first explain the limitations of using only one pCMA, thereby highlighting the

necessity of going beyond the single pCMA approach and employing a two-stage method

to perform interpolation on the NCMA. Subsequently, we will provide a detailed

description of the proposed two-stage method. This method ensures both reliability and

computational efficiency by leveraging precomputed results and maintaining geometric

consistency across stages.

5.3.1 Limitations of using only one pCMA

To achieve our goal of avoiding re-estimating the spatial filter after the microphone

array has rotated, we need to develop a method that estimates the NCMA signal before

rotation using the NCMA signal after rotation. The received signal of the M -channel

NCMA after rotating by −∆ radians is denoted as

xNCMA,a =
[
x1,a · · · xM,a

]T
. (5.1)

Our task is to estimate what the sound signal, currently received by the NCMA

(xNCMA,a) would have been if it were observed at the original position before rotating

by −∆ radians.

After the NCMA undergoes a rotational transformation, the corresponding pCMA

can be derived using the previously outlined method, resulting in what we refer to

as pCMA-a, where “a” signifies “after rotation”. To represent the non-uniform dis-
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tribution of microphones on pCMA-a, we introduce the known error vector ea, which

is initially set to zero. Consequently, the angular positions of the microphones on

pCMA-a can be expressed as

P (ea) =
[
0−∆+ ea,1 · · · 2π(M−1)

M
−∆+ ea,M

]T
. (5.2)

Using the observed signals xNCMA,a and the microphone distribution P (ea), unsuper-

vised calibration is applied to iteratively optimize the error vector. Upon convergence,

the estimated value of the true error vector of pCMA-a, denoted as ϵ̂a, is obtained.

This implies that when the microphones are positioned on pCMA-a according to the

estimated error vector ϵ̂a, the signals received by pCMA-a will closely approximate

those received by the NCMA after rotation.

To reconstruct the NCMA signal before rotation, represented by the ∆-rad-rotated

result of xNCMA,a, a seemingly straightforward approach might involve rotating the

corresponding pCMA-a by ∆ rads and assuming that this rotated pCMA-a aligns

with the ∆-rad-rotated NCMA. Using this assumption, the unes-SFI method would

be applied to pCMA-a to estimate the ∆-rad-rotated signal, denoted as x(∆)pCMA−a,

according to the following equation:

x(∆)pCMA−a = UM(ϵ̂a)UM(∆)UM(ϵ̂a)
−1xNCMA,a. (5.3)

This estimated signal would then be considered the before-rotation NCMA signal.

However, this approach is fundamentally flawed due to a critical distinction: the

microphones of pCMA-a and NCMA are positioned along different circular paths.

Even for corresponding microphones—those whose received signals are approximately

equivalent—the signal similarity does not persist after both pCMA-a and NCMA are

rotated by ∆ rads.
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To clarify this issue, consider an extreme yet intuitive example involving two M -

channel unes-CMAs with the same center but different radii. Although the microphones

on these unes-CMAs are distributed differently, we assume they initially receive the

same signal, denoted by z. Given their respective known error vectors, α and β

(α ̸= β), unes-SFI can be applied to each unes-CMA to compute the ∆-rad-rotated

signal as follows:

z(∆)α = UM(α)UM(∆)UM(α)−1z

z(∆)β = UM(β)UM(∆)UM(β)−1z.
(5.4)

From these equations, it is evident that z(∆)α and z(∆)β are not equal. This dis-

crepancy highlights a key issue: microphones positioned on circles with different radii,

even if they initially receive identical signals, will not maintain signal equivalence after

rotation.

Consequently, the assumption that the signal obtained from the ∆-rad-rotated pCMA-

a, x(∆)pCMA−a, represents the signal before rotation for an NCMA is inherently flawed,

as the rotated pCMA-a does not accurately correspond to the ∆-rad-rotated NCMA.

5.3.2 Two-stage method for estimating signal before rotation

on an NCMA

Each rotation modifies the correspondence between the NCMA and its associated

pCMA, necessitating a more sophisticated method. To address this challenge, we

propose a two-stage method for estimating the signal on the NCMA before rotation.

This approach accommodates the dynamic relationship between the NCMA and its

corresponding pCMA after each rotation, providing a more robust and accurate solution
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Figure 5.2: Overall processing flow of the two-stage method.

for signal estimation in these scenarios. Below, we outline the methodology and its

advantages in handling this complex problem. The overall processing flow of the two-

stage method is illustrated in Figure 5.2.

Stage 1: Preprocessing before rotation

In the first stage, preprocessing is conducted while the NCMA remains in its initial,

unrotated position. The signals captured by the microphones at this position are

denoted as

xNCMA,b =
[
x1,b · · · xM,b

]T
. (5.5)

It is important to note that xNCMA,b is not the target signal we aim to estimate through

interpolation. Instead, it is used to compute the spatial filter required for beamform-

ing. When the NCMA rotates by −∆ radians, the resulting microphone signals are

represented as xNCMA,a. Our objective is to estimate the signal xNCMA,a(∆), which cor-

responds to the state of xNCMA,a as if it were recorded at the original, before-rotation
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position of the NCMA. This eliminates the need to recompute the spatial filter after

each rotation.

In this before-rotation state, the NCMA is associated with a corresponding pCMA,

referred to as pCMA-b, where “b” stands for “before rotation”. For pCMA-b, we

initially assume an error vector eb with a known value of zero, thereby defining the

microphone distribution for this pCMA-b as

P (eb) =
[
0 + eb,1 · · · 2π(M−1)

M
+ eb,M

]T
. (5.6)

Using the signal xNCMA,b and the assumed error vector eb, unsupervised calibration

is then applied to obtain an estimate of the true error vector for pCMA-b denoted by

ϵ̂b. This calibration step forms the foundation for the subsequent signal estimation

process.

Stage 2: Calibration after rotation

The second stage takes place after the NCMA has rotated by −∆ radians. In this

stage, the microphone signals xNCMA,a and the initial error vector ea are used to esti-

mate the error vector for pCMA-a, following the method outlined earlier.

A key aspect of this process is the consistent use of the same reference channel during

the unsupervised calibration in both the first and second stages. By maintaining a fixed

reference channel for computing the cost functions (4.12) and (4.14), we ensure that

both pCMA-b and pCMA-a are aligned on the same circle. This geometric consistency

is essential for the effectiveness of the interpolation method, as it allows for accurate

signal reconstruction across the two stages and ensures the coherence of the overall

approach.

It is important to note that, aside from using the same channel as the reference, the
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unsupervised calibrations in the two stages are entirely independent and uncorrelated.

Once ϵ̂b and ϵ̂a have been obtained, we can determine what xNCMA,a would be like if it

were observed at the original position before rotation. This reconstruction is achieved

using the following equation:

xNCMA,a(∆) = UM(ϵ̂b)UM(∆)UM(ϵ̂a)
−1xNCMA,a. (5.7)

Through this approach, the GSFI technique is successfully implemented on the NCMA,

enabling accurate estimation of the before-rotation signal and avoiding the need for re-

estimating spatial filters after rotations.

Optimization for practical applications

In practical applications, since the NCMA’s position before rotation is fixed, the first

stage of unsupervised calibration only needs to be executed once. The estimated result,

ϵ̂b, can then be saved for use in subsequent interpolation tasks. However, because

the microphone distribution on pCMA-a changes significantly after each rotation, the

second stage of unsupervised calibration must be performed for every new rotation to

obtain the corresponding estimated error vector ϵ̂a, just as Figure 5.2 shows.

To optimize efficiency, we can take advantage of the fact that, with an angular

resolution of 1°, there are only 359 possible rotational positions for the NCMA. Instead

of performing unsupervised calibration repeatedly, the error vectors for all 359 positions

of pCMA-a can be pre-estimated and stored in advance. Each error vector corresponds

to one rotational position of the NCMA.

By estimating all 359 error vectors of pCMA-a in advance, the second-stage unsu-

pervised calibration is replaced by a lookup operation. During the second stage, rather

than recalculating ϵ̂a through iterative optimization, we simply select the precomputed
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error vector corresponding to the current rotational position. This selection is based

on the rotation angle and the result of the first-stage calibration, ϵ̂b. By avoiding iter-

ative optimization after each rotation, this approach significantly improves the overall

efficiency of the interpolation process while maintaining accuracy.

5.4 Simulated experimental evaluation

To validate the effectiveness of the proposed GSFI technique on NCMAs, we con-

ducted simulation experiments that closely followed the methodology outlined in Chap-

ter 4. These experiments aimed to demonstrate that the two-stage GSFI method can

successfully interpolate sound fields on NCMAs, thereby enabling the accurate estima-

tion of before-rotation signals.

In contrast to the experiments in Chapter 4, where we investigated various proper-

ties of unsupervised calibration (e.g., Section 4.4.6 explored the relationship between

the signal length used for unsupervised calibration and the interpolation accuracy),

the focus in this chapter shifted entirely to evaluating the interpolation performance

of the proposed two-stage GSFI method, specifically the accuracy of estimating the

before-rotation signals. As such, experiments related to validating the properties of

unsupervised calibration were omitted.

In addition to verifying GSFI’s ability to estimate before-rotation signals on NCMAs,

we also evaluated its effectiveness in enhancing source signals when integrated with

beamforming techniques. The experimental setup was consistent with the setup used

in Chapter 4, except for the substitution of unes-CMAs with NCMAs. Below, we detail

the experimental setup and procedure.
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5.4.1 Setup

Dataset and preprocessing

We utilized the SiSEC database [72], which provides high-quality speech recordings

sampled at 16 kHz. From this database, we curated a dataset comprising eight dis-

tinct speech signals, balanced equally between male and female speakers. These speech

signals were convolved with room impulse responses (RIRs) to simulate a reverberant

environment with a reverberation time of approximately 100ms, as described in Chap-

ter 3. For time-frequency (TF) domain analysis, we applied the short-time Fourier

transform (STFT) with the following parameters:

• Window type: Blackman window.

• Window length: 64ms length.

• Overlap: 1/8 overlap.

Simulated experimental setup for NCMAs

We constructed 10 different M -channel NCMAs by randomly selecting microphones

from various CMAs sharing the same center but with radii varying from 0.03m to

0.1m. These arrays were placed in a noise-free room to record the sound signals.

Like in Chapter 4, we still introduced a known angular error ωi(°) and an addi-

tional unknown error ϵi(°), i ∈ {0, ...,M − 1}, to simulate the non-uniform unknown

microphone distribution. ωi adhered to a Gaussian distribution characterized by a

mean of zero and a standard deviation equivalent to
√
200°, and ϵi also conformed to a

Gaussian distribution, with a mean of zero and variances systematically spanning from

(0°)2 to (
√
500°)2 in discrete steps of (

√
10°)2. All the errors were independently and
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identically distributed. For every specified variance of ϵi, a comprehensive set of 100

random samples was generated, thereby guaranteeing a rigorous and reliable statistical

evaluation.

It is crucial to emphasize that while ωi and ϵi are used to construct the unknown

microphone distribution, the purpose of unsupervised calibration in the GSFI method

for the NCMAs is not to precisely determine the true error angles of each microphone,

i.e., ωi+ϵi. Instead, the aim is to identify a microphone distribution on the hypothetical

pCMA such that the signals received by the pCMA closely approximate those captured

by the NCMA.

The incorporation of the known error angle ωi and the unknown error angle ϵi serves

two key purposes. First, the inclusion of both ωi and ϵi ensures the arbitrariness and un-

certainty of the microphone distribution, aligning the experimental setup more closely

with real-world applications, where the microphone arrangement is often irregular and

partially unknown. Second, through comparative experiments, we can evaluate the

performance of the previous unes-SFI method, which lacks an unsupervised calibration

process, on the NCMA under distinct conditions: when the actual error angle (ωi+ ϵi)

is unknown, and ωi is mistakenly treated as the actual error angle; and when the actual

error angle (ωi + ϵi) is known.

Once again, the simulation setup leveraged two distinct simulated environments for

performing unsupervised calibration and evaluation, respectively, to emphasize a key

advantage of the proposed method: its ability to perform robustly even when the acous-

tic environment changes. As noted earlier, even dealing with NCMAs, once the error

vector for the pCMA is estimated, no additional calibration is required―–even when

applied to new environments. Figure 5.3 and Figure 5.4 illustrate the two simulated

environments.
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Figure 5.3: Simulated environment during unsupervised calibration. One of the speech

signals (female) is placed at the position of 0°, with the microphone array located at the

center of the circle.

The simulation process was structured as follows: initially, the sound field was simu-

lated using the microphone array configuration depicted in Figure 5.3. A single speech

signal was utilized to perform unsupervised calibration, yielding all of the estimated

error vectors for the pCMA-b and pCMA-a in the two-stage method. Subsequently,

after calibration, the microphone array and sound source were relocated to one of the

new positions shown in Figure 5.4. At these new positions, a new sound field was

simulated after the microphone array rotated by ∆ radians. Using the newly simu-

lated sound field, the observation signals were estimated as if they were captured at

the original reference position before rotation, with the rotational angle ϕ = ∆π/180°

being a known value.
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Figure 5.4: Simulated environment for evaluation. The remaining seven speech signals

are positioned at 30°, . . . , 210°, respectively. There are four optional positions of the

microphone array, located at 120°, . . . , 210°. In the experiments to evaluate the per-

formance of GSFI, one speech signal and one position of the microphone array are

selected each time, resulting in 28 combinations. In the experiments to evaluate the

performance of source enhancement, two speech signals are chosen and mixed as the

observed signal, with the microphone array positioned at 180°.

Evaluation criteria

Similarly, the performance evaluation of GSFI on NCMAs was carried out in two

distinct sets of experiments to assess its effectiveness in controlled and mixed-source

scenarios.

The initial experiments were designed to evaluate the performance of GSFI in a

controlled setting, involving a single, unmixed sound source. The performance was
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measured using the Signal-to-Error Ratio (SER) [42,43,75–77], which is defined as

SERm,f = 10 log10

( ∑
t |xm,t,f |2∑

t |x̂m,t,f − xm,t,f |2

)
, (5.8)

where xm,t,f represents the TF domain signal for the mth channel at time frame t and

frequency bin f , and x̂m,t,f denotes xm,t,f ’s estimate. The number of microphones,

M , was varied between 4 to 7 to investigate the impact of array size on performance.

Additionally, the array was rotated to simulate different orientations, enabling an as-

sessment of GSFI’s robustness to changes in rotation angles.

The second set of experiments aimed to evaluate the source enhancement perfor-

mance of GSFI and compare it with other methods in scenarios involving multiple

mixed sound sources. The Minimum Power Distortionless Response (MPDR) beam-

former [46, 47, 82] was used to enhance the target source. The performance metrics

are based on the source-to-distortion ratio (SDR), which quantifies the overall quality

of the enhanced signal, and the source-to-interference ratio (SIR), a metric for mea-

suring the suppression of interfering sources in the enhanced signal [78]. The MPDR

beamforming filter was computed using the covariance matrix of the interference signal

and the relative transfer function (RTF) [17,79] as described in [42,43]. The RTF was

determined from the RIR of the target source to each microphone. For these experi-

ments, two sound sources were randomly selected from Figure 5.4 and mixed into the

observation signal. The angular separation between the two sources was systematically

varied at intervals of 30°, 60°, . . . , 180°.
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Figure 5.5: Boxplots of mean SER improvement on NCMAs at frequencies up to 1 kHz

across various scenarios with different M and ϕ values.

5.4.2 Channelwise SER improvements

This section presents the experimental results for channelwise SER improvements

across various scenarios involving different values of M and ϕ, achieved using multiple

methods on diverse NCMAs. The sound source and NCMA positions were varied as

illustrated in Figure 5.4. SER improvement served as the evaluation metric to mea-

sure the enhancement achieved through signal processing, comparing the interpolated

signal’s SER with the baseline SER, which was determined by comparing the uninter-

polated signal after rotation with the target signal before rotation. The mean SER

improvements relative to cases without interpolation are summarized in Figure 5.5.

Each box plot includes 280 samples, representing the mean SER improvement for seven

sound sources at four NCMA locations, with 10 unique NCMAs per location.

The results clearly demonstrate that the proposed two-stage GSFI method consis-

tently achieves significant SER improvements across all tested scenarios on NCMAs.

Using our proposed two-stage GSFI method, we achieved an average SER improve-

ment of up to 15 dB higher compared to the previous unes-SFI method. Although

the achieved SER improvement score is only about 5 dB and slightly smaller than
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that obtained with unes-CMAs in Chapter 4, the enhancement is still substantial and

demonstrates the robustness of the method. In contrast, directly applying the unes-

SFI method, developed for unes-CMAs, fails to deliver satisfactory results for NCMAs,

even when the error angles of each microphone are known. This discrepancy arises

because unes-SFI assumes the NCMA behaves like a CMA, leading to a fundamental

mismatch between the sound signals used for interpolation and the error angle in-

formation used to compute the compensation matrix. Such a mismatch significantly

degrades the interpolation performance.

The proposed method addresses this issue through unsupervised calibration, which

identifies corresponding positions on a pCMA that align with the received sound signals.

This alignment minimizes errors in the calculation of the compensation matrix, result-

ing in superior interpolation performance. Additionally, we evaluated a one-stage GSFI

method, which utilized only one pCMA to directly estimate the before-rotation signal

and treated it as the NCMA’s before-rotation signal. However, the one-stage method

demonstrated smaller improvements compared to the two-stage approach with a de-

crease up to 5 dB, as it failed to account for how each rotation alters the correspondence

between the NCMA and its associated pCMA. This oversight limits its effectiveness,

further underscoring the robustness of the proposed two-stage GSFI method.

5.4.3 Results of source enhancement with batch processing

In this experiment, we evaluated the source enhancement performance of the MPDR

beamformer under varying conditions. The number of microphones was fixed atM = 6,

while the rotation angle ϕ was varied across 10°, 20°, 30°, and 40°. To establish a bench-

mark, we first computed the MPDR beamformer filter weight w using the RTF and

the multichannel STFT spectrogram from the NCMA in its original, unrotated posi-
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Table 5.1: Abbreviations for spectrograms from different evaluation settings

Spectrograms from different Status of evaluation conditions

evaluation settings B R I K C T

B0: No beamforming 0 0 0 0 0 0

R0: No rotation 1 0 0 0 0 0

I0: No interpolation 1 1 0 0 0 0

C0: unes-SFI without calibration 1 1 1 0 0 0

K1: unes-SFI with known mismatches 1 1 1 1 0 0

T0: one-stage GSFI 1 1 1 0 1 0

T1: proposed two-stage GSFI 1 1 1 0 1 1

tion. This baseline scenario, denoted as R0, utilized true, uninterpolated signals and

represented the optimal performance case. For simplicity and clarity, we use the same

abbreviations as in Chapter 4 to denote the evaluation conditions for spectrograms ob-

tained from different methods, where B represents Beamforming, R represents Rotation,

I represents Interpolation, K represents Known Mismatches, C represents Calibration,

T represents Two-stage processing, Index 0 represents off, and Index 1 represents On.

The spectrograms obtained from different evaluation settings were subsequently pro-

cessed using the precomputed MPDR beamformer weight w to generate the estimated

target signal. A summary of these spectrograms is provided in Table 5.1. For addi-

tional comparison, an unprocessed scenario (B0), where the raw microphone signals

were treated as the target signal, was included alongside R0.

Figure 5.6 presents the SDR and SIR results for the different methods across various

scenarios. The proposed two-stage GSFI method (T1) consistently delivers a 10 dB

higher performance than previous unes-SFI methods (C0 and K1) and a 5 dB higher

performance than the one-stage GSFI method (T0) across all simulated conditions.

This demonstrates the robustness of the proposed method in mitigating the effects of

rotation for source enhancement when applied to NCMAs.
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Figure 5.6: Boxplots of SDR and SIR obtained by MPDR beamformer in seven situ-

ations: unprocessed (B0), no rotation of the NCMA (R0), without interpolation when

the NCMA rotates (I0), with previous unes-SFI without calibration when the NCMA

rotates (C0), previous unes-SFI with known mismatches when the NCMA rotates (K1),

with one-stage GSFI method when the NCMA rotates (T0) and our proposed two-stage

method when NCMA rotates (T1).

Notably, K1 did not achieve better performance than C0, despite having access to

the actual error angles. Furthermore, both C0 and K1 produced worse SDR and SIR

results than I0, highlighting the limitations of directly treating an NCMA as a CMA

and applying unes-SFI without the proposed two-stage calibration. These findings

underscore the importance of the proposed method in effectively addressing the unique

challenges posed by NCMAs.

5.4.4 Results of source enhancement with online processing

In this experiment, we evaluated the application of the GSFI technique to online

beamforming on NCMAs, focusing on scenarios where the acoustic transfer system

(ATS) underwent continuous, dynamic changes. To adapt to these conditions, we
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employed a smoothing factor α for online updating of the spatial covariance matrix

(SCM), as described in Section 2.3.3, and used the Sherman–Morrison formula to

reduce the computational complexity of inverting the covariance matrix within the

MPDR beamforming framework.

The algorithm and experimental setup followed the methodology outlined in Sec-

tion 3.4.4. Two sound sources, each lasting 40 s, were positioned at 30° and 210°, while

the microphone array was placed at 180°, as depicted in Figure 5.4. The frame length

was set to 256ms, and a segmental SDR was calculated at intervals of 1 s to evaluate

source enhancement performance. The smoothing factor α was empirically set to 0.99,

which provided the highest segmental SDR. The inversion of the covariance matrix V̂ −1
f

was initialized using the first 10 frames. During the experiment, the NCMA underwent

two gradual rotations: the first, from 0° to 20°, began at 10 s, and the second, from 20°

to 40°, began at 30 s. Both rotations occurred at a constant speed of 0.01° per time

sample (equivalent to 160° per second), simulating realistic human or humanoid robot

rotation speeds. Observations were generated by concatenating data from the NCMA

at various angles.

Figure 5.7 shows the segmental SDRs obtained for different methods with M = 6.

The R0 scenario continues to achieve the highest source enhancement performance

(5 dB), serving as the optimal benchmark. Both C0 and K1 showed inferior performance

compared to I0, echoing the trends observed in Figure 5.6. In contrast, the proposed

method (T1) demonstrated significant performance improvements, with an average

performance increase of 15 dB and 5 dB over previous interpolation methods (C0 and

K1) and the one-stage GSFI method (T0), respectively. However, in certain cases, T1

failed to consistently achieve high SDRs, with performance occasionally falling below

that of the B0 scenario.
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Figure 5.7: Segmental SDR every 1 s with M = 6 on an NCMA, where the two vertical

dashed lines indicate the time points when the rotation started: 0° ⇒ 20° ⇒ 40°.
B0 shows the mixture itself, R0 shows the case where no rotation occurs, I0 shows

online processing without interpolation, C0 and K1 respectively show online processing

using previous unes-SFI without calibration and with known mismatches, T0 shows

online processing with the one-stage GSFI method, T1 shows online processing with the

proposed two-stage GSFI method, and T1f shows online processing with the proposed

two-stage GSFI method and the frozen SCM.

As discussed in Chapter 4, during online beamforming, the interpolated signal was

used to update the SCM in real-time. This process introduced inaccuracies in the SCM,

likely contributing to the degradation in beamforming performance. To address this

issue, we introduced the T1f method, which involved using the two-stage GSFI method

but halting SCM updates during NCMA rotations. The SCM was iteratively updated

only before the rotation, and no further updates were made once rotation commenced.

Interestingly, in contrast to the results presented in Figure 4.12 of Chapter 4, T1f

achieved SDRs similar to those of T1, with both showing an approximate SDR of 3 dB.

However, by preventing errors from propagating during SCM updates, T1f consistently

outperformed the B0 scenario, a result not achieved by T1. This finding suggests that

the performance degradation in T1 was likely due to inaccuracies introduced during

SCM updates. Despite this improvement, the SDRs achieved by T1f remained close
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to those of B0, indicating that there are still inherent limitations in applying GSFI to

online beamforming with NCMAs.

5.5 Conclusion

In this chapter, we extended the GSFI framework to address the challenges posed

by NCMAs and evaluated its performance across diverse experimental scenarios. By

employing unsupervised calibration, we constructed a pCMA that closely replicates

the received signal of the NCMA, effectively serving as a surrogate. This approach

mitigates the spatial complexity introduced by the NCMA’s non-circular geometry,

enabling the application of methods originally designed for circular arrays.

Furthermore, using a two-stage strategy, we resolved the limitation that a pCMA

can only act as a substitute for an NCMA at a specific position. As the NCMA rotates

to different positions, it corresponds to different pCMAs respectively. The two-stage

GSFI method effectively bridges this gap, facilitating accurate interpolation of sound

signals on an NCMA.

Comprehensive simulation experiments proved the proposed method’s effectiveness

in accurately estimating before-rotation signals. The results of channelwise SER eval-

uations showed that the two-stage GSFI method consistently outperforms previous

methods, such as unes-SFI without calibration and the one-stage GSFI method, across

various experimental conditions. Furthermore, in downstream array signal processing

tasks, the proposed method exhibits a certain level of capability to enhance source sepa-

ration performance, overcoming the challenges associated with the irregular geometries

of NCMAs.

Despite these advancements, residual challenges remain, particularly in the context

of online beamforming. Future research could focus on developing alternative interpo-
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lation frameworks to further enhance performance in complex and dynamic acoustic

environments.





6 Conclusions

6.1 Summary of This Thesis

This thesis has presented a systematic study and development of techniques for

rotation-robust microphone array signal processing, with a particular focus on wearable

auditory systems equipped with circular microphone arrays (CMAs). These systems,

designed for applications like augmented hearing and humanoid robots, face unique

challenges due to the dynamic nature of their operation. In such scenarios, the ro-

tation of the microphone array induces time-variant acoustic transfer systems (ATS),

significantly complicating real-time signal processing and necessitating innovative so-

lutions to maintain robust signal processing performance.

The core contribution of this thesis is the development of a generalized sound field

interpolation (GSFI) framework, designed to overcome the limitations of existing meth-

ods. Specifically, GSFI overcomes the reliance on equally spaced CMAs (es-CMAs)

and progressively extends its applicability to handle more complex scenarios, includ-

ing unequally spaced CMAs (unes-CMAs), unknown microphone distributions, and

nearly-circular microphone arrays (NCMAs).

Chapter 2 focused on establishing the theoretical background and foundational con-

cepts underlying the methods proposed in this thesis. The theory of the beamform-

ing, with a particular emphasis on Minimum Power Distortionless Response (MPDR)

beamforming, was briefly introduced as a representative example of array signal pro-
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cessing that this research aims to make rotation-robust. The chapter further detailed

the formulation of sound field interpolation (SFI), which serves as the cornerstone of

the proposed methods. A key contribution of this chapter was the analysis of the

periodicity and singularity properties of SFI, along with the influence of the Nyquist

component. These aspects, which are critical to understanding the framework, were

introduced and are further discussed in subsequent chapters. Additionally, the chapter

outlined the application of SFI in both batchwise and online beamforming, setting the

stage for its integration into source enhancement techniques.

The first major contribution of this thesis was the development of the unequally

spaced sound field interpolation (unes-SFI) method. In Chapter 3, the focus was on

breaking through the limitation of existing SFI by enabling their application on unes-

CMAs. By compensating for positional deviations, unes-SFI effectively transforms

the time-variant ATS on an unesCMA into a time-invariant ATS on an esCMA. This

innovation enables the estimation of before-rotation signals of an unesCMA, achieving

rotation-robust beamforming. Furthermore, building upon the analysis presented in

the previous chapter, a more comprehensive examination of the properties of the unes-

SFI and the influence of the Nyquist component was conducted. This in-depth analysis

culminated in the derivation of a more generalized conclusion regarding the behavior

and applicability of unes-SFI. Through a series of simulation experiments, this method

demonstrated substantial improvements in reconstructing before-rotation signals and

maintaining beamforming accuracy in dynamic conditions, establishing a foundation

for robust signal processing in wearable CMA applications.

The second major contribution of this thesis addresses the practical challenge of un-

known microphone configurations in wearable CMAs. To tackle this issue, Chapter 4

introduces the GSFI framework, which combines unes-SFI with an iterative optimiza-
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tion method known as unsupervised calibration. This calibration technique estimates

the positional errors of individual microphones, accurately determining their distribu-

tion on the array without requiring prior knowledge of their locations. With the esti-

mated microphone positions, unes-SFI is employed to reconstruct the before-rotation

signal of the microphone array. This enables the use of pre-estimated spatial filters

without the need for re-estimation, thus achieving rotation-robust beamforming. By

integrating unsupervised calibration with unes-SFI, the GSFI framework significantly

enhances its practicality, making it suitable for real-world scenarios where microphone

positions cannot be pre-defined or controlled. Simulation experiments results validate

the efficacy of GSFI, demonstrating its ability to maintain high interpolation accuracy

and achieve effective source enhancement performance on unes-CMAs with unknown

microphone distributions.

Recognizing that wearable arrays often deviate from a perfect circular geometry due

to the shape of the robot’s head, the final contribution of this thesis, presented in

Chapter 5, focuses on extending the GSFI framework to accommodate NCMAs. To

address this challenge, a virtual pseudo-CMA (pCMA) is constructed through unsuper-

vised calibration, which effectively reduces the spatial complexity inherent in NCMAs.

Furthermore, a two-stage strategy is introduced to tackle the dynamic changes in the

correspondence between the pCMA and the NCMA during rotation. This approach

enables accurate signal reconstruction and ensures rotation-robust beamforming. This

extension not only demonstrates the feasibility of GSFI for handling non-ideal array ge-

ometries but also highlighted its adaptability to real-world conditions, where deviations

from ideal circular geometries are unavoidable.
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6.2 Future Work

Despite the significant advancements achieved in this thesis, there are some limi-

tations to the current GSFI framework that merit further investigation. Addressing

these limitations offers promising avenues for future research:

1. Performance with a Small Number of Microphones: The GSFI framework

does not perform well when the number of microphones in the array is small. This

limitation arises from the reduced spatial information available for interpolation

and beamforming, which compromises the framework’s ability to accurately re-

construct signals. Future work could focus on exploring alternative methods

tailored for sparse arrays, ensuring robust performance even in low-sensor-count

scenarios.

2. Sensitivity to Microphone Distribution: The performance of GSFI is highly

sensitive to the spatial distribution of microphones. In extreme cases, where

microphones are clustered closely together, the interpolation process suffers due

to the lack of diversity in spatial information. Future studies could investigate

ways to enhance the robustness of GSFI against such irregular distributions,

possibly by incorporating adaptive weighting mechanisms or distribution-aware

optimization techniques.

3. Challenges with NCMAs: While GSFI has been extended to accommodate

NCMAs, the framework still struggles to achieve significantly high performance

on these non-ideal geometries. This limitation stems from the inherent complexity

of interpolating signals on arrays that deviate substantially from a circular struc-

ture. Further research could focus on refining the GSFI framework for NCMAs,

possibly by incorporating geometry-specific adjustments or leveraging advanced
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modeling techniques.

4. Exploration of Alternative Models and Algorithms: To address the afore-

mentioned limitations and enhance overall performance, future work could ex-

plore alternative models and algorithms. For example:

• Regression Models: Methods such as Gaussian Process Regression (GPR)

could provide a flexible approach for modeling sound fields, enabling im-

proved interpolation and handling of irregular microphone distributions.

• Deep Learning Strategies: Data-driven approaches, such as neural net-

works, could be leveraged to learn complex sound field representations and

address challenges posed by non-ideal microphone distributions and geome-

tries. These strategies might also offer greater adaptability to diverse acous-

tic environments and dynamic conditions.

5. More Complex Acoustic Environments: In this thesis, we focus solely on

rotational motion. However, in real-world applications, robots often rotate their

heads while simultaneously undergoing translational motion. Eliminating the

impact of translational motion on array signal processing is therefore a crucial

challenge. While our proposed method has the potential to be extended to such

scenarios, further research and experimental validation are required to fully assess

its effectiveness. Future work could focus on exploring the application of GSFI

in real-world environments, where exists the rotational and translational motion

simultaneously.

By addressing these limitations and exploring innovative methodologies, future re-

search can further improve the robustness, adaptability, and practical applicability
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of the GSFI framework, enabling more effective solutions for dynamic and complex

acoustic scenarios.
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