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Abstract

Speech signal modeling, a fundamental component of modern speech processing, has attracted

considerable attention due to its critical role in representing speech signals as intermediate acoustic

features and reconstructing speech signals from these features, which enables a wide range of appli-

cations, including speech synthesis, voice conversion, and speech compression. Vocoders are con-

sidered as fundamental tools for achieving such encoding and decoding processes, which have been

broadly classified into two categories: conventional vocoders grounded in conventional signal process-

ing (CSP) techniques and neural vocoders leveraging the modeling capabilities of deep learning.

As a typical representative of conventional vocoders, Quasi-Harmonic Modeling (QHM) methods,

including QHM, adaptive QHM (aQHM), and extended aQHM (eaQHM), are powerful methods to

model the speech as sparse sinusoidal components by extracting the three fundamental elements of

each component, i.e., amplitude, phase, and frequency, in a frame-by-frame scheme. Even with errors

in initial frequency estimates from fundamental frequency extractors, the frequency correction mech-

anism in QHM is capable of mitigating such frequency errors. The extracted framewise parameters

(amplitude, phase, and frequency) of the sparse components are interpretable and controllable, making

QHM methods widely used for speech resynthesis and modification in terms of pitch and duration. Un-

fortunately, QHM methods struggle to extract the parameters accurately; thus, the quality of generated

speech is limited. Additionally, the iterations in aQHM and eaQHM destroy the efficiency.

On the other hand, the recent advances in deep learning have ushered in the era of neural vocoders.

With their powerful fitting capabilities, they can accurately generate speech waveforms. Further-

more, with proper design, neural networks often require only simple matrix operations, making neural

vocoders highly efficient. However, they are inherently black-box models, lacking interpretability. As

a result, they do not provide insights into speech structure or vocalization principles, and are unable to

facilitate speech modification.

Both conventional vocoders and neural vocoders exhibit distinct advantages and limitations. These

characteristics stand in contrast to, yet also complement, the QHM methods, which are inherently

interpretable and capable of providing valuable insights into the underlying mechanisms of speech.

This observation motivates the integration of the aforementioned approaches (conventional vocoders

and neural vocoders), with the objective of retaining their respective strengths while mitigating their

inherent weaknesses. Accordingly, this thesis proposes a novel hybrid framework designed to achieve

efficient speech modeling, characterized by high quality, computational efficiency, and flexibility in

speech analysis, modification, and synthesis.

First, we review the theory of QHM and some representatives of neural vocoders. To overcome

that the frequency correction of QHM methods is limited, we propose a spectrogram-based frequency

correction method, which relies on the spectrogram of the speech, instead of estimated parameters like



QHM methods. Inspired by the powerful gradient descent method for deep learning, we propose a

backpropagation-based QHM (BP-QHM), which uses the gradient descent to obtain the required pa-

rameters by directly minimizing the reconstruction waveform error of the entire speech. Additionally,

we propose a novel spectrogram loss to increase the convexity and accelerate the convergence during

the optimization. The experimental evaluations being conducted to investigate the effectiveness show

that our method achieves an improvement in speech resynthesis quality and frequency correction. The

successful use of backpropagation in the QHM framework also implies the potential of combining the

QHM framework and deep learning.

Second, although BP-QHM enhances the resynthesis quality, its iterative nature remains time-

consuming. Inspired by the success of BP in propagating the loss back through the QHM synthesis

process, we are motivated to integrate the neural network and QHM framework to propose a novel

framework for the neural vocoder, leading to the development of QHM-GAN. QHM-GAN integrates

the interpretability of CSP and the high quality and robustness of neural networks. However, the reso-

nance characteristic modeling of QHM-GAN is limited. Thus, based on this framework, speech signals

can be further encoded into autoregressive moving average (ARMA) functions to model the resonance

characteristics, which gives birth to QHARMA-GAN, enabling accurate amplitude and phase estima-

tion at arbitrary frequencies. This allows for high-quality synthesis and flexible speech modifications

in terms of pitch shifting and time stretching, while also reducing time consumption and network

size. Experimental evaluations indicate that the proposed method leverages the strengths of QHM, the

ARMA modeling, and neural networks, outperforming existing methods in generation speed, synthesis

quality, and modification flexibility.

Eventually, the specific speech modification algorithms for both the conventional QHM-based

methods and the proposed neural-based methods are described in detail. The fundamental concepts of

time-scale and pitch-scale modification are introduced, and the core idea of shape-invariant modifica-

tion is consistently extended across all methods. Each method adopts a different strategy to preserve

the relative phase, thereby maintaining a consistent waveform shape during modification. As a result,

the speech can be modified while preserving a spectral envelope sequence, which is essential for ensur-

ing the perceptual quality of the modified output. Experimental evaluations indicate that the proposed

method QHARMA-GAN is powerful in resonance characteristics modeling, leading to a higher per-

formance in pitch-scale speech modification than QHM methods, particularly from the perspectives of

generation efficiency and the quality of the modified speech.

Overall, in this thesis, the QHM framework and neural network were successfully integrated to pro-

pose a hybrid speech analysis-synthesis-modification system, which can extract the acoustic parame-

ters from the speech signals with a high accuracy, synthesize the speech from the extracted parameters

with a high quality, and modify the speech with a high controllability.
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Chapter 1

Introduction

Speech is the most natural and essential way of communication, including human-human com-

munication and machine-human communication. Consequently, speech signal processing has

emerged as one of the most dynamic and influential fields within signal processing. Over the

past few decades, research in speech processing has driven the development of numerous tech-

nologies that benefit human society. For instance, the advances in speech recognition has enabled

machines to comprehend not only human speech but also human language, greatly enhancing

machine-human interaction, while speech compression has significantly improved the efficiency

and effectiveness of telecommunication and storage of the speech. Speech modeling is also one of

the aspects of speech processing, helping human to understand the structure of speech and human

vocal mechanisms. These advances in speech modeling have further promoted the development

of various fields, such as doctors diagnosing by analyzing voices and providing voice conversion

for vocal patients. The applications of speech processing are extensive and continuously expand-

ing. With the increasing development of computing, communication, and the Internet, the role of

speech processing is expected to grow even more prominent in the future.

1.1 Formulation of Speech Signals

The speech signals are usually considered as the nonstationary signals, consisting of voiced parts

and unvoiced parts. The voiced part of speech is often referred to as the deterministic part, as

it typically exhibits a periodic structure that can be effectively characterized through spectral

analysis. In contrast, the unvoiced part is considered stochastic in nature, as it resembles random

noise both perceptually and acoustically. The combination of these two parts forms the complete

human speech signal, which can be represented as follows:

x(t) =
K

∑
k=0

xk(t)+ ε(t) =
K

∑
k=0

Ak(t)eiϕk(t)+ ε(t), (1.1)
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where K is the number of components, Ak(t) and ϕk(t) denote the instantaneous amplitude and

instantaneous phase of the k-th component at instantaneous time t (t is continuous), and ε(t) is

stochastic noise. This equation implies that the deterministic voiced speech can be further decom-

posed into several sinusoidal components. To gain a clearer understanding of the composition

and intrinsic nature of speech signals, researchers have continuously explored various methods

and models for parameter extraction, such as the parameters of sinusoidal components or the

statistical properties of noise distributions, to represent and characterize the speech signals.

1.2 Speech Modeling

As the foundation of modern speech processing, speech modeling has driven the development of

related fields such as speech enhancement and speech compression. It enables a better understand-

ing of speech by visualizing its structure with acoustic features, and allows effective manipulation

by reconstructing signals from these features. Since the structure of raw speech waveforms is

often difficult to interpret directly, speech modeling extracts or transforms them into acoustic fea-

tures that are more interpretable and physically meaningful. These features provide insights into

the nature of speech signals. By leveraging such interpretable acoustic features together with the

objectives of other speech processing tasks, related problems can be addressed from a physical

perspective. For example, the essence of voice conversion lies in modifying the fundamental fre-

quency (also referred to as f0) or timbre of speech. Speech modeling allows for the extraction

of acoustic features such as loudness and frequency, enabling voice conversion to be achieved

through the manipulation of these physically meaningful parameters.

The tool for completing speech modeling is called a vocoder, which is responsible for the tasks

of acoustic feature extraction and speech reconstruction, i.e., encoding and decoding. With the

development of the computer, vocoders have consequently seen substantial advancements over

the years. Throughout their development, various types of vocoders have emerged, all evolving

toward several overarching objectives:

• Accurately extracting acoustic features, such as the three essential elements of the signal,

i.e., amplitude, frequency, and phase;

• Reconstructing speech with the highest possible quality;

• Performing analysis and synthesis with increasing speed to enable real-time processing;

• Enhancing the controllability of acoustic features to better support downstream tasks.

These vocoders can be categorized into different types based on their characteristics. For ex-

ample, according to whether the model adheres to the speech production mechanism, vocoders

can be classified into models, such as the source-filter model and the sinusoidal model. Alterna-

tively, based on the algorithmic architecture employed, vocoders can be divided into conventional
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(a) Human vocal tract (b) Human vocal cords

Figure 1.1: Human speech production mechanism [1].

vocoders and neural vocoders. In the following sections, we provide a detailed introduction to

these vocoder types.

1.2.1 Source-Filter Model versus Sinusoidal Model

To model speech signals, the most intuitive approach is to adopt a mathematical perspective, i.e.,

representing speech using formal mathematical models. One of the most representative examples

is the sinusoidal model, which characterizes speech as a sum of sinusoidal components. This

modeling framework facilitates a deeper understanding of the mathematical essence of speech by

enabling the extraction of physically interpretable parameters, such as amplitude, frequency, and

initial phase. These parameters not only offer insights into the nature of speech signals but also

allow for flexible artificial control, namely synthesis and modification.

On the other hand, unlike many other types of signals, speech signal exhibits inherent struc-

tural characteristics. For instance, the energy distribution and relative phases of each component

somewhat follow some specific regularities, which are primarily determined by the configuration

of the speaker’s vocal tract, which can be considered as a filter. To uncover these underlying regu-

larities, researchers have investigated the human speech production mechanism from medical and

physical perspectives and have attempted to formulate mathematical models that reflect the entire

speech production mechanism. Source-filter models are built based on such an uncovered speech

production mechanism. Before introducing these two modeling methods in detail, we first briefly

review the human speech production mechanism.

Figs 1.1(a) and 1.1(b) illustrate the principal anatomical parts involved in speech generation,

which are conventionally categorized into three major subsystems: the lungs, the larynx, and the

vocal tract.

The speech production process initiates in the lungs, which serve as the primary energy source

by generating an airflow that travels upward through the trachea. Upon reaching the glottis, this

airflow is modulated, as depicted in Fig. 1.1(b). Depending on the state of the vocal cord, this

airflow can be modulated as two types of source signals, namely a quasi-periodic signal, which

is produced by the vibration of the vocal cord, as shown in the right part of Fig. 1.1(b), or a tur-
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bulence excitation signal, which is generated from the abducted vocal cord. These source signals

then propagate into the vocal tract, which plays a vital role in shaping the speech characteristics

and determining the type of phonation: the quasi-periodic signals will evolve into voiced speech,

while turbulence excitation signals will evolve into unvoiced speech. The vocal tract comprises

three interconnected resonating cavities: the pharyngeal, oral, and nasal cavities. Within this

tract, the initial source is spectrally filtered and transformed into the distinct timbral and artic-

ulatory human speech. Finally, the acoustically shaped signal is radiated from the lips into the

external environment.

For voiced speech production, the larynx parts can be considered as the excitation source, with

the vocal folds (or vocal cords) playing a central role. The process begins when the vocal folds pe-

riodically adduct and abduct to yield a train of glottal airflow pulses, sustaining a quasi-periodic

excitation. The temporal frequency of these pulses defines the f0 of the voiced speech signal,

which directly influences the perceived pitch. Dynamic variations in f0 over time convey critical

prosodic information, distinguishing between different linguistic forms (e.g., questions or state-

ments) as well as reflecting the emotional status of the speaker. Acoustically, the vocal tract acts

as a time-varying filter that selectively amplifies or attenuates each component of the source sig-

nals. Frequencies exhibiting significant energy concentrations are referred to as formants, whereas

those with substantial energy suppression are termed anti-formants. The interaction between for-

mants and anti-formants plays a crucial role in defining the spectral envelope of the signal, and

thereby determines the perceived timbre of the sound.

In the case of unvoiced speech, no periodic excitation is generated at the glottis. Instead, the

turbulent airflow is produced at constrictions within the vocal tract, such as the teeth, lips, or

tongue, and subsequently shaped by the surrounding cavities to form voiceless consonants, such

as /s/, /f/, /h/, /p/, /t/, and /k/.

Source-Filter Model

As the name suggests, the source-filter theory of speech production, initially proposed by Dudley

[8] in the context of vocoder design and later formalized and extended by Fant [9], posits that

speech signals can be decomposed and modeled mathematically as a combination of a source

excitation signal and a filter. The excitation signal mainly represents the glottal source gener-

ated by the vocal folds, while the filter mainly represents the vocal tract. The speech waveform

can be conceived as the result of the source excitation signal being shaped by the time-varying

filter whose characteristics are determined by the configuration of the vocal tract, which can be

formulated as

x(t) = u(t)∗h(t), (1.2)
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where ∗ denotes the convolution operator. x(t) denotes the observed speech waveform while u(t)

and h(t) represents the source excitation signal and filter response at t instant in time domain,

respectively. This interaction produces a spectral envelope exhibiting broadband energy peaks,

forming what is widely known as the source-filter model of speech. Assuming that the filter is

time-invariant, i.e., considering the interaction within a short term, such an interaction can be

spectrally derived from the Fourier transform of Eq. (1.2):

X(ω) =U(ω)H(ω), (1.3)

where X(ω), U(ω), and H(ω) denote the Fourier transform of x(t), u(t), and h(t), respectively.

This equation indicates that the filter produces a spectral envelope exhibiting broadband energy

peaks to shape the source excitation signals envelope, forming what is widely known as the source-

filter model of speech.

For voiced speech, the excitation source is typically modeled as a sequence of glottal pulses

representing the glottal volume velocity, where the temporal spacing of the pulses defines the

output f0. Thus, the Liljencrants-Fant (LF) model was proposed to model the generation of the

glottal pulses [10]. Although the LF model was capable of modeling the source excitation signal

from a fluid dynamics perspective of glottal airflow, it needs too many parameter to represent the

signal in a simple way. Thus, many studies were gradually conducted to more specifically explore

the source excitation signals and simplify them, such as the improved LF model [11] and the

reshaped LF model [12]. In contrast, unvoiced speech lacks periodic glottal pulses, and is instead

represented using zero-mean white noise to reflect its stochastic nature. Therefore, the source

excitation signal can be similarly formulated as

u(t) =
K

∑
k=0

uk(t)+ εu(t) =
K

∑
k=0

Au
k(t)e

iϕu
k (t)+ εu(t), (1.4)

where Au
k(t) and ϕu

k (t) denote the amplitude and phase of the k-th excitation component and εu(t)

is the noise in the source excitation signal. Typical examples of source-filter models include

STRAIGHT and WORLD, both of which model the source and filter components using different

approaches. In the following sections, we provide a detailed introduction to each of these models.

STRAIGHT [13, 14] is a prominent example of vocoders grounded in the source–filter model

paradigm, in which speech is modeled as a spectral envelope (serving as the filter) derived from

short-time Fourier transform (STFT), and excited by a spectrally flat source signal constructed in

the frequency domain.

The main contribution of STRAIGHT lies in its two-stage spectral envelope analysis technique,

designed to suppress periodicity-induced artifacts both in the time and frequency domains. In the

first stage, STRAIGHT applies two pitch-synchronous complementary analysis windows, wp(t)
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Figure 1.2: Structure of WORLD vocoder in [2].

and wc(t), to extract two magnitude spectra, Sp(t) and Sc(t), respectively:

wp(t) = e(t−t0)2
h(t− t0), wc(t) = wp(t) · sin

(
πt
t0

)
(1.5)

where t denotes the time index, t0 = 1/ f0 is the pitch period, and h(t) is the second-order cardinal

B-spline function:

h(t) =





1−|t|, if |t|< 1

0, otherwise
(1.6)

These complementary spectra are then combined to form a smoothed spectrogram:

SU(t) =
√

S2
p(t)+ξ S2

c(t) (1.7)

where ξ = 0.13655 is an empirically determined blending factor to minimize temporal fluctuation.

This stage effectively smooths the spectrogram along the time axis, reducing pitch-synchronous

artifacts. In the second stage, STRAIGHT applies a frequency-domain smoothing process to SU ,

using a smoothing window whose shape is determined by the second-order B-spline and whose

bandwidth is proportional to f0. This operation suppresses artifacts caused by the pitch-dependent

frequency resolution, resulting in a cleaner and more stable spectral envelope. With the estimated

f0, smoothed spectral envelope, and aperiodicity spectrogram, STRAIGHT can resynthesize high-

quality speech and flexibly modify pitch. However, due to its multi-stage processing and high

computational cost, STRAIGHT is not well-suited for real-time applications.

To improve the STRAIGHT vocoder, the WORLD vocoder [2] was proposed with improve-

ments in terms of effectiveness, implementability, and robustness. The structure of the WORLD

vocoder is illustrated in Fig. 1.2, showing that the WORLD consists of a pitch detector (DIO) [15],

a spectral envelope extractor (CheapTrick) [16], and an aperiodic parameter estimator (PLAT-

INUM) [17]. Sometimes, the pitch detector was further replaced by Harvest [18] to obtain a
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better result of pitch and then further processing. The workflow of the WORLD vocoder is given

below. First, the pitch will be extracted by DIO or Harvest, as

f0 = PDIO(x) or f0 = PHarvest(x). (1.8)

where PDIO and PHarvest are the functions of DIO and Harvest, respectively. The extracted f0 is

subsequently utilized, together with the original speech waveform x, as input to the CheapTrick

algorithm in order to estimate the time-varying spectral envelope on a frame-by-frame basis. This

process is formally described as:

Sspec = PCheapTrick(x, f0), (1.9)

where Sspec denotes the resulting spectral envelope and PCheapTrick is the function of CheapTrick.

This envelope is then employed as an additional input to the PLATINUM module, which estimates

the aperiodicity parameter. The aperiodicity parameter characterizes the relative bandwidths of the

periodic and aperiodic components across the full frequency range. The computation is expressed

as:

Paperiodic = PPLATINUM(x, f0,Sspec). (1.10)

where PPLATINUM is the function of PLATINUM. After obtaining the f0, spectral envelope Sspec,

and aperiodicity parameter Paperiodic, the speech can be reconstructed with an overlap-add (OLA)

method [19]. Additionally, this OLA method is based on f0, also called pitch; thus, this method

is referred to as pitch-synchronous OLA (PSOLA) [20]. The linear interpolation will be used in

the spectral envelope, while the f0 will determine the positions of source impulses in the time do-

main. Then, the spectral envelope at the source impulse positions will be determined to obtain the

corresponding impulse response, which is similar to the speech waveform. One of the key advan-

tages of this approach is that it allows for the manual modification of f0; the corresponding source

impulse locations and their associated spectral envelopes can then be determined accordingly, en-

abling the synthesis of pitch-modified speech, namely, prosodically altered speech. Additionally,

the low computation of the WORLD vocoder enables it to be applied in real-time processing, thus,

it became a well-known and widely used vocoder.

In addition to STRAIGHT and WORLD, numerous other source-filter vocoders have been de-

veloped. While we do not provide an exhaustive overview here, these vocoders share a common

objective: to accurately model both the vocal tract transfer function and the glottal excitation sig-

nal. This precise modeling is crucial for achieving high-quality speech synthesis as well as greater

flexibility in speech modification tasks.
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Sinusoidal Model Family

In contrast to the source-filter model, the sinusoidal models do not aim to explicitly model the

vocal tract; instead, they fundamentally process speech from the perspective of signal represen-

tation. As Eq. (1.1) shows, the speech signal can be represented as the combination of several

sinewaves and noise. Consequently, the essence of both speech generation and modification lies

in the extraction, manipulation, and reconstruction of sinusoidal and noise parameters. As such,

parameter extraction becomes a critical issue in the overall process.

Before introducing the sinusoidal model, we first review the parameter extraction. Parameter

extraction techniques are broadly classified into two categories: nonparametric and parametric

methods. Nonparametric approaches, such as the short-time Fourier transform (STFT) [21] and

the Wigner–Ville distribution [22], are based on time–frequency (TF) analysis, where the signal is

transformed from the time domain into the TF domain to reveal its internal structure. These meth-

ods provide an intuitive visualization of how signal energy evolves over time and frequency, and

parameters such as instantaneous frequency can typically be inferred by detecting ridges or local

maxima within the TF representation. Nevertheless, these methods are fundamentally constrained

by the time–frequency uncertainty principle, which states that it is impossible to achieve arbitrar-

ily high resolution simultaneously in both time and frequency domains. This trade-off leads to

blurred TF representations, thereby degrading the accuracy of ridge detection and, consequently,

the precision of parameter estimation.

To mitigate the resolution limitations inherent in conventional TF methods, various postpro-

cessing techniques have been proposed, including the reassignment method [23],[24], and syn-

chrosqueezing transforms [25], [26]. These techniques aim to enhance the concentration of energy

in the TF representation by reallocating energy to more appropriate locations, thereby yielding

sharper and more interpretable TF structures. While such enhancements can significantly im-

prove visual clarity and reduce spectral smearing, they remain limited in that they do not involve

an explicit demodulation process. As a result, their ability to isolate and extract modulated signal

components remains suboptimal, particularly in the presence of noise or overlapping components.

In contrast, parametric methods adopt a model-based framework, where the signal is assumed

to adhere to a specific analytical form characterized by a set of parameters. Representative ex-

amples include the chirplet transform [27], the matching demodulation transform [28], and si-

nusoidal modeling (SM) [29]. These methods generally require an initial estimation of certain

key parameters, such as instantaneous frequency, chirp rate, or amplitude envelope, which serve

as priors to guide the subsequent analysis. By incorporating such prior knowledge, parametric

approaches can more accurately adapt to the signal’s structure, thereby enabling more precise

and robust parameter extraction. Although this increased accuracy often comes at the expense of

higher computational complexity and a dependency on reliable prior estimates, parametric meth-

ods offer considerable advantages in scenarios requiring high-resolution analysis or in conditions
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where nonparametric methods are rendered ineffective.

Among the various parametric approaches, sinusoidal modeling (SM) has garnered consider-

able attention and has been widely adopted in speech analysis and synthesis tasks. The core idea

of SM is to represent the speech signal as a sum of sinusoidal components, each characterized by

its framewise amplitude, frequency, and phase, as formulated as

x(t) =

(
K

∑
k=−K

akei2π fkt

)
w(t), t ∈ [−Tl,Tl] , (1.11)

where ak and fk denote the complex amplitude and frequency of the k-th component, respectively.

w(·) denotes the moving window whose length is 2Tl . Note that k and −k correspond to sym-

metric frequency components, which are complex conjugates of each other, ensuring that x(t)

is a real-valued signal. These parameters are typically estimated during the analysis stage on a

frame-by-frame basis. Subsequently, in the synthesis stage, their instantaneous counterparts are

derived through interpolation across frames, which are then used to reconstruct the time-domain

speech signal. This modeling framework offers a compact and interpretable representation of

voiced speech components, making it particularly suitable for applications such as speech coding,

transformation, and synthesis.

However, a critical limitation of SM lies in its dependency on the short-time Fourier transform

(STFT) for parameter extraction. Due to the limited time–frequency resolution of STFT and the

inherent trade-offs imposed by the uncertainty principle, the resulting time–frequency representa-

tion is often blurred. Consequently, the detected amplitude and frequency trajectories may deviate

from their true values, leading to inaccuracies in the subsequent modeling process. These inaccu-

racies inevitably propagate to the synthesis stage, thereby degrading the perceptual quality of the

reconstructed speech. Moreover, the phase component is also affected by the imprecise extraction,

further contributing to synthesis errors.

Another notable disadvantage of conventional SM arises when modeling unvoiced speech seg-

ments. Unlike voiced sounds, unvoiced speech is inherently stochastic, characterized by energy

distributed irregularly across the spectrum. Since SM is fundamentally designed to model peri-

odic structures via deterministic sinusoids, it fails to capture the aperiodic and broadband nature

of unvoiced sounds. As a result, the synthesized unvoiced segments tend to sound unnatural or

overly smoothed, lacking the richness and variation of natural speech.

To overcome these deficiencies, the harmonic plus noise model (HNM) was proposed [30],[31],

offering a more comprehensive modeling framework. HNM decomposes the speech signal into

two distinct components: deterministic harmonic components for the voiced segments, and stochas-

tic noise components for the unvoiced or aperiodic segments. The noise component is typically

modeled using an all-pole filter driven by white noise, enabling it to better capture the random

spectral characteristics of unvoiced sounds. By combining the harmonic component with a noise

model, HNM achieves greater flexibility and can produce more natural-sounding synthetic speech
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across both voiced and unvoiced segments [32]. This dual-component structure also allows for

more effective speech modification and transformation, such as pitch shifting and time stretching,

while maintaining high quality.

Nevertheless, HNM introduces its own set of challenges. A major issue is its reliance on the

accurate estimation of f0. Since the harmonic component (denoted as xv
HNM(t)) is constructed

based on f0 and its multiples, as formulated as

xv
HNM(t) =

(
K

∑
k=−K

akei2πk f0t

)
w(t), t ∈ [−Tl,Tl] , (1.12)

any errors in f0 estimation can lead to significant mismatches in the harmonic structure, thereby

compromising the quality of the synthesized speech. To mitigate this problem, various f0 refine-

ment strategies have been proposed and are often employed prior to synthesis [33], aiming to

correct initial estimation errors and stabilize the harmonic modeling process.

Despite these improvements, a fundamental limitation remains: both SM and HNM assume

a purely harmonic structure for voiced speech. In practice, however, natural speech is only ap-

proximately periodic. Variations in vocal fold vibration, articulation dynamics, and coarticulation

effects introduce deviations from ideal harmonicity. As a result, modeling voiced speech us-

ing a fixed set of harmonics still leads to notable resynthesis errors, particularly in expressive or

emotionally colored speech. These challenges highlight the need for more flexible and adaptive

modeling techniques capable of capturing the full complexity of natural speech production.

To address the aforementioned limitations inherent in both SM and HNM, the quasi-harmonic

model (QHM) was proposed by Pantazis et al. [34]. QHM introduces a more flexible mod-

eling framework by leveraging quasi-harmonic components whose frequencies are not strictly

constrained to be integer multiples of a single f0. This is achieved through the incorporation of

a frequency correction mechanism, allowing the model to treat each component’s frequency as

an independent parameter rather than being solely tied to f0. As a result, QHM is capable of

jointly modeling both the harmonic (voiced) and inharmonic (unvoiced or transitional) segments

of speech, thus providing a unified representation for a broader class of signals.

Despite this flexibility, a key assumption in QHM limits its effectiveness: the model assumes

that the signal is locally stationary within each analysis frame. In practice, however, speech sig-

nals, particularly in expressive speech or singing voice, often exhibit rapid variations in frequency

and amplitude, even within short time intervals. This stationarity assumption can lead to inaccu-

rate parameter estimation, especially when modeling fine-grained dynamics of speech or rapidly

modulated components.

To overcome this limitation, the adaptive quasi-harmonic model (aQHM) was introduced [35],

extending the QHM framework by replacing its fixed-phase exponential formulation with a non-

stationary phase function. This modification allows aQHM to more accurately track time-varying

instantaneous frequencies, thereby capturing the dynamic nature of speech signals across consec-
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utive frames. By modeling the phase evolution in a flexible manner, aQHM significantly improves

the fidelity of frequency estimation and enhances the overall modeling capability.

Nevertheless, while aQHM addresses the limitations related to nonstationary frequency, it still

employs a relatively simplistic amplitude model, typically assuming linear amplitude modulation

within each frame. This assumption becomes inadequate in scenarios such as singing voice mod-

eling, where the amplitude envelope can exhibit nonlinear behavior, often governed by cubic or

higher-order modulations. To address this, the extended adaptive quasi-harmonic model (eaQHM)

was proposed [36], which further augments aQHM by introducing an adaptive amplitude mod-

ulator. This additional component enables the model to capture complex, nonlinear amplitude

variations, thereby facilitating more accurate extraction of both frequency and complex amplitude

trajectories.

The enhanced modeling capabilities of eaQHM make it a powerful tool not only for speech

analysis but also for a wide range of speech processing applications. Notably, it enables high-

quality speech synthesis [37],[38] by accurately reconstructing both voiced and unvoiced com-

ponents with accurate time-varying parameters. Furthermore, it supports advanced speech mod-

ification techniques, such as time-scale modification [39] and pitch-shifting [40], by providing

a detailed and manipulable representation of the speech signal. Taken together, QHM and its

adaptive extensions offer a principled and flexible framework that bridges the gap between con-

ventional modeling methods and the rich variability of natural speech. Finally, we summarize the

evolution of the sinusoidal model family in Fig. 1.3, where the regular (upright) text denotes the

analysis methods, and the italicized text indicates the specific limitations addressed by each newly

proposed method.

1.2.2 Conventional Vocoder versus Neural Vocoder

Vocoders can be categorized based on their modeling objectives into source-filter models and si-

nusoidal models. Similarly, from the perspective of methodological approaches employed during

the modeling process, vocoders can be broadly classified into two main categories: conventional

vocoders, which are grounded in conventional signal processing (CSP) techniques, and neural

vocoders, which leverage the representational power of deep learning frameworks. In the follow-

ing parts, we provide a detailed introduction to each of these two categories of vocoders.

Conventional Vocoder

Conventional vocoders typically employ CSP algorithms for feature or parameter extraction,

which often results in faster computational performance. Representative examples include spectr-

ogram-based approaches, such as those relying on STFT and SST, source-filter vocoders, such as

the STRAIGHT and the WORLD, as well as sinusoidal vocoders such as HNM and QHM-based

methods.
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Figure 1.3: Development of the sinusoidal model family

Spectrogram-based methods offer the most straightforward and efficient means of exploring the

structure of speech signals. However, as previously discussed, the uncertainty principle results in

blurred TF representations when using STFT or wavelet transform. Even post-processing tech-

niques such as the SST, which aim to sharpen spectrograms, are limited in their ability to produce

more readable TF representations, making accurate parameter extraction challenging.

To address this, numerous studies have focused on enhancing the TF concentration of spectro-

grams. For instance, Oberlin et al. [41] proposed the second-order synchrosqueezing transform

(2nd-SST), based on the STFT and extendable to the wavelet domain, which is designed for mul-

ticomponent signals. This method includes both the vertical synchrosqueezing transform (VSST)

and the oblique synchrosqueezing transform (OSST), significantly improving time–frequency

concentration while maintaining the reconstruction capability of conventional time–frequency

reassignment methods. Based on Oberlin’s work, Pham et al. [42] introduced the high-order

synchrosqueezing transform (High-order SST), which elevates instantaneous frequency estima-

tion from second-order to higher-order, enabling the characterization of multicomponent signals

with higher-order frequency modulations. This not only enhances time–frequency concentration

but also improves reconstruction accuracy of individual components. Furthermore, a synchroex-

tracting transform [43] was proposed, which uses the instantaneous frequency estimator to locate

the ridges of signal components and only extracts the parameters at the ridges, significantly sharp-
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ening the spectrogram for better ridge detection and parameter extraction.

Although the constantly emerging studies have improved the TF concentration a lot, such con-

centrated TF representation can not be straightway modified to obtain the modified speech from

the perspectives of pitch-shifting and time-stretching. Thus, the parameter can be preliminarily

extracted and then further improved by parametric methods. Among them, the sinusoidal model

family was more widely used because of directly extracts the amplitudes, frequencies, and phases

of each signal component. Subsequently, in the sinusoidal model family, QHM and HNM have

become two major branches, and many researchers have successively studied how to extract pa-

rameters and reconstruct speech signals more accurately [30], [44], [45], [34], [35], [36].

As the parameter estimation accuracy improves, a corresponding increase in computational

complexity becomes inevitable. For instance, models such as the HNM rely on iterative proce-

dures for refining f0 to ensure convergence toward perceptually natural results. More advanced

QHM variants, including aQHM and eaQHM, further intensify this computational burden by em-

ploying multi-stage iterative optimization algorithms, which aim to progressively capture the in-

tricate amplitude and frequency modulations present in natural speech signals. These iterative

processes are essential for achieving high-fidelity modeling and resynthesis, particularly in com-

plex acoustic situations, including rapid pitch transitions, vibrato, or breathy voice. However, the

computational cost associated with such high-resolution modeling significantly limits the practi-

cal applicability of QHM-based methods, especially in resource-constrained environments such

as embedded systems, mobile devices, or real-time communication platforms. This gives rise to

a trade-off between computational efficiency and synthesis quality: while more accurate model-

ing leads to perceptually improved output, it also demands more processing time and hardware

resources.

Neural Vocoder

With the rapid advancement of neural networks (DNNs), these technologies have also been widely

applied to speech modeling, which has significantly accelerated the development of neural voco-

ders, leveraging their strong nonlinear modeling capabilities and hierarchical architectures to learn

complex mappings between input acoustic features and output waveforms. DNNs utilize complex

fitting functions to mimic the learning mechanisms of the human brain, and thus typically require

large amounts of training data to achieve optimal performance. Selecting an appropriate neural

network architecture is akin to choosing an effective learning strategy for a specific task: a well-

designed model is capable of acquiring the desired knowledge, while an unsuitable architecture

may fail to learn altogether. Consequently, the design of neural network architectures has become

a major focus of research, further propelling the development of artificial intelligence. Much like

the human brain, once a neural network has successfully acquired knowledge, it can quickly and

effectively apply it to new data. Moreover, because DNNs are trained on a large dataset, they
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exhibit a degree of robustness against noise and perturbations, enabling them to make accurate

inferences even under challenging conditions. In the context of text-to-speech (TTS) tasks, for

example, DNNs function similarly to the human brain: after extensive training on the pronuncia-

tion of text, they can rapidly respond to new textual input and synthesize corresponding speech.

Furthermore, even if the input text contains minor distortions or noise, the model is often capable

of producing accurate and intelligible output.

In the early stages, WaveNet [46] pioneered neural waveform modeling by introducing an au-

toregressive (AR) architecture that generates speech sample-by-sample with high fidelity. Despite

its outstanding synthesis quality, WaveNet suffers from prohibitive computational complexity and

latency due to its sequential generation nature. To address this limitation, Parallel WaveNet [47]

was proposed, employing a knowledge distillation mechanism to achieve parallel waveform gen-

eration while preserving synthesis quality. Subsequently, WaveGlow [48] integrated Glow-based

normalizing flows with WaveNet-style components to achieve a more favorable balance between

speed and fidelity. Meanwhile, WaveRNN [49] adopted a recurrent neural network (RNN) frame-

work to reduce computational cost significantly while maintaining high-quality waveform gener-

ation. In parallel, the emergence of generative adversarial networks (GANs) [50] further revolu-

tionized neural vocoder design by introducing an adversarial learning paradigm. Models such as

Parallel WaveGAN [51] and MelGAN [52], [53] applied GAN architectures to non-autoregressive

vocoder frameworks, where a generator is trained to produce waveforms that fool a discriminator

trained to distinguish between real and synthetic speech. Among these, HiFi-GAN [4] stands out

for its ability to generate high-quality speech at real-time speeds, employing multi-scale discrim-

inators and multi-resolution STFT loss to ensure both waveform fidelity and perceptual quality.

HiFi-GAN transforms mel-spectrograms into waveforms through multi-stage upsampling in the

time domain and spectral compression, enabling it to efficiently model fine-grained waveform

details.

1.2.3 Application of Speech Modeling

Speech modeling plays a pivotal role across various speech processing tasks, where the objective

is to construct representations that accurately reflect the acoustic, prosodic, or linguistic informa-

tion of speech. Below, we describe several key application areas and how speech modeling is

integrated into each task.

In speech coding, the goal is to compress the speech signal for efficient storage or transmission

while preserving perceptual quality. For instance, the telecommunication technique has signifi-

cantly shortened the distance between people, enabling speech information to be transmitted via

wireless communication systems. However, due to technical limitations, bandwidth constraints

have become a bottleneck that restricts transmission efficiency. Therefore, it is crucial to use

speech modeling to encode the speech signals. Conventional approaches, such as linear predic-
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tive coding (LPC) [54], model the spectral envelope of speech using a linear filter and separately

encode the excitation signal. This modeling approach enables low-bitrate coding and forms the

basis of widely used codecs such as code excited linear prediction (CELP) [55]. By leveraging

a parametric model of speech production, these methods reduce redundancy while maintaining

intelligibility.

In automatic speech recognition (ASR), speech modeling is used to match acoustic observations

to phonetic or linguistic units. Hidden Markov models (HMMs) [56] combined with Gaussian

mixture models (GMMs) [57] were long considered the standard framework, where HMMs model

the temporal dynamics of phonemes and GMMs characterize the emission distributions. The

speech signal is first converted into acoustic features, such as MFCCs (mel-frequency cepstral

coefficients) [58, 57], which are then aligned with phonetic state sequences using the model. This

process enables robust speech-to-text conversion and has been applied in a wide range of real-

world ASR systems.

In speaker recognition, the task is to determine or verify a speaker’s identity from speech. For

example, with the rapid development of smartphones, these devices have become increasingly

similar to computers in their ability to store vast amounts of information and media, including

sensitive personal data. Consequently, speaker recognition systems can serve as a form of bio-

metric authentication, enhancing the protection of user privacy and data security. Conventional

systems often employ Gaussian mixture models [59] to represent the distribution of acoustic fea-

tures for each speaker. During enrollment, a GMM is trained per speaker using their speech data;

during inference, the likelihood of the test utterance under each speaker model is evaluated. This

statistical modeling approach effectively captures speaker-specific characteristics and supports

both identification and verification cases.

Speech synthesis, particularly statistical parametric speech synthesis, also heavily relies on

speech modeling. HMM-based synthesis methods [60] model the distributions of spectral, pitch,

and duration parameters conditioned on linguistic input. In synthesis, these parameters are gen-

erated from the model and passed to a vocoder to reconstruct the waveform. The parametric

nature of the model allows explicit control over speaking rate, pitch, and other prosodic attributes,

making it suitable for applications such as audiobook generation or assistive speech devices.

Speech modification is another meaningful task that aims to modify the intonation or speed

of the speech while keeping the retained speech information unchanged. The essence of intona-

tion modification is actually to change the frequency of the voiced speech, whereas the key to

changing speech speed is to extend or shorten the duration of the local phonemes. As mentioned

before, the methods in the sinusoidal model family, such as sinusoidal model [61], are the typical

approaches that represent speech as a sum of sinusoids with time-varying amplitudes, frequency,

and phases. Thanks to their capacity for extracting framewise amplitudes, frequency, and phases,

these models are particularly effective in vocoding and speech modification tasks. The model’s
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interpretability makes it useful for analyzing and modifying specific frequency bands or formants,

which is important in speech modification applications.

Additionally, in voice conversion, the task is to modify the speech of a source speaker to sound

as if it were spoken by a target speaker, without changing the linguistic content. Conventional

approaches often decompose speech into spectral envelope, pitch, and duration, and then map the

source speaker’s features to those of the target using statistical models such as Gaussian mixture

models [62]. The converted features are then resynthesized into a waveform using vocoders. This

technique finds application in personalized text-to-speech, dubbing, and assistive communication

systems.

With the advent of deep learning, many of these conventional methods have been augmented or

replaced by neural networks, since DNN can bring superior quality and robustness that conven-

tional algorithms cannot achieve. Many techniques that were previously difficult or infeasible to

implement, such as voice conversion, text-to-speech, and speech enhancement, can now be effec-

tively realized through the application of DNNs. Additionally, many well-established techniques,

such as speech coding and speaker recognition, have also experienced substantial performance

improvements through the integration of DNN.

In text-to-speech (TTS), systems such as Tacotron [63] generate mel-spectrograms from text,

which are then converted to waveforms using neural vocoders like WaveNet [46] or HiFi-GAN

[4]. These models learn the entire mapping from text to audio, enabling natural and high-quality

speech generation that outperforms earlier parametric approaches. Besides, in speech enhance-

ment, neural speech models are trained to suppress noise while preserving clean speech charac-

teristics. Given noisy speech as input, the model predicts a clean signal [64], either in the time

domain or spectral domain. Such models are applied in hearing aids, telecommunication systems,

and robust speech interfaces. Additionally, DNN helped voice conversion methods directly learn

mappings between source and target speaker characteristics without requiring parallel data. Mod-

els such as CycleGAN-VC [65] and AutoVC [66] disentangle speaker identity from linguistic

content, enabling flexible many-to-many voice conversion. These models extract a content rep-

resentation from the input speech and then generate speech in the target speaker’s voice using a

neural decoder or vocoder. Neural approaches greatly improve naturalness and speaker similarity,

making them suitable for applications like personalized assistants, robot voice generation, and

expressive speech synthesis.

DNN is also key in neural speech coding, where end-to-end models [67] are trained to compress

and reconstruct speech. Unlike the conventional versions, these systems jointly optimize feature

extraction and quantization, enabling higher quality at lower bit rates. In speaker recognition,

DNN-based embeddings like x-vectors [68] are learned to represent speaker identity in a compact

form. These embeddings are then used in back-end classification systems, supporting robust

verification across different languages and acoustic conditions.
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As speech modeling continues to evolve, it remains at the core of enabling high-quality, con-

trollable, and interpretable speech processing across both conventional and modern neural frame-

works.

1.3 Potential Limitations and Problem Formulation

1.3.1 Limitations of Existing Speech Modeling Methods

Although speech modeling technologies have made significant strides, each approach still has its

limitations. It is precisely these limitations that have drawn the attention of many researchers,

greatly advancing the field. In this subsection, we analyze the aforementioned methods and mod-

els in detail, examining their respective advantages and disadvantages.

First, we focus on the source-filter model and the sinusoidal model family. Source-filter voco-

ders, such as STRAIGHT [69] and WORLD [2], decompose speech into excitation and spectral

envelope components, mimicking the human vocal production mechanism. These models provide

interpretable control over pitch, timbre, and duration with efficient computing, making them well-

suited for applications requiring flexible prosody manipulation and voice conversion in a real-

time scheme. However, their performance degrades when the assumptions of stationarity and

minimum-phase filtering are violated. In other words, if the pitch varies rapidly over time, it

often results in artifacts such as buzzy or over-smoothed speech. More importantly, most existing

source-filter models exhibit significant limitations in accurately modeling the phase information,

which inevitably leads to a reconstructed speech waveform that deviates considerably from the

ground truth, further degrading the quality of synthesis and modification.

Additionally, sinusoidal models, including HNM and quasi-harmonic models such as QHM,

aQHM, and eaQHM, represent speech as a sum of time-varying sinusoids with optional noise

components. Likewise, these models also offer an interpretable framework, which is particu-

larly effective for high-quality synthesis and modification of voiced segments, especially when

phase information is accurately modeled. Advanced variants, such as aQHM, eaQHM, further

improve modeling accuracy and stability to both voiced and unvoiced segments by introducing

adaptive refinement and energy-aware iteration, leading to the perfect modeling and reconstruc-

tion quality but a substantial computation cost. Nonetheless, sinusoidal vocoders often struggle

with unvoiced or transient segments, although eaQHM can provide a considerable capacity to fit

unvoiced speech. Moreover, the reliance on accurate f0 estimation of them can limit performance

in real-world cases, for instance, if the f0 initially detected by the pitch detector significantly devi-

ates from the ground truth, the performance of HNM degrades sharply, and even though eaQHM

attempts to iteratively refine the frequency estimates, it often fails to converge to the accurate

values. In some cases, it may even amplify the estimation errors instead of correcting them, im-

plying that the robustness is limited. What’s more, the iterative estimation brings a considerable
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computation cost, making it unable to be applied in real-time processing, which has distanced

aQHM and eaQHM from the advantage of the high computation speed of conventional methods.

However, since they do not require data-driven training, their implementation and deployment are

relatively straightforward.

On the other hand, neural vocoders such as WaveNet [46], HiFi-GAN [4], and WaveGlow [48]

directly learn the mapping from acoustic features (e.g., mel-spectrograms) to waveforms using

DNNs. These models achieve near-natural speech quality and are highly data-driven, enabling

them to generalize across diverse speaking styles and languages. Due to the large amount of

training data, the results are usually considerably better than the results of conventional methods,

especially in terms of multi-style and multi-speaker tasks. However, neural vocoders require large

amounts of data and computational resources for training. Since collecting training data requires

considerable effort, this becomes a disadvantage of neural methods compared to conventional

approaches. Moreover, neural vocoders often lack interpretability and fine control over speech

parameters because of their black-box nature, which limits their applicability in prosody-sensitive

tasks such as expressive synthesis or speech modification. In other words, most neural vocoders

fail in speech modeling, including analysis and modification. Moreover, their inference effective-

ness is usually influenced by their structure: a simple architecture of DNN allows for high-speed

or even real-time processing, while a complicated structure will bring a heavy computation cost,

leading to unnecessary waste in device configuration. Moreover, their performance can degrade

under mismatched or noisy conditions if the training data is insufficient, where conventional para-

metric models may instead offer more stability and robustness.

Overall, source-filter models offer interpretable structure, with strong controllability and ef-

ficiency, but they suffer from limited spectral detail modeling and assumptions that modulation

should be weak. Sinusoidal models focus on the speech signal itself to precisely represent speech

signals as interpretable parameters and are particularly well-suited for periodic signals, yet they

are sensitive to pitch estimation and less robust for aperiodic or unvoiced segments. On the

other hand, neural vocoders achieve high-quality, robust, and natural synthesis through end-to-end

learning, but they lack interpretability, require large datasets, and high computational resources. In

contrast, conventional approaches are usually fast, easy to implement, and not data-driven. Their

performance in analysis is limited, which then degrades the synthesis quality. Therefore, hybrid

frameworks that combine the interpretability of conventional models with the learning capacity of

neural networks are an active area of research.

A comprehensive summary of the advantages and limitations of these methods is presented in

Fig. 1.4, illustrating that the ultimate goal of vocoders is to integrate the strengths of different

approaches while addressing their weaknesses.
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Figure 1.4: Overview of existing speech modeling methods, summarizing their advantages and disadvan-
tages. The figure also illustrates the motivation of hybrid approaches that aim to combine the strengths of
different paradigms while mitigating their weaknesses.

1.3.2 Problem Formulation

Taking into account the advantages and disadvantages of each method shown in Fig. 1.4, it can

be concluded that the ultimate goal of speech modeling is to construct systems that enable

1) accurately extracting acoustic features,

2) high-quality synthesis,

3) high-speed processing,

4) acoustic feature controllability.

Conventional vocoders, including source-filter models and sinusoidal-based approaches (e.g.,

WORLD and QHM), offer interpretability and explicit control of speech parameters, which is use-

ful for tasks requiring precise modification. Neural vocoders, on the other hand, achieve superior

synthesis quality and robustness through data-driven learning, and can even operate in real time

with efficient designs.

These characteristics are inherently complementary: conventional methods provide transparency

and controllability, while neural vocoders excel in naturalness and generalization. This comple-
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mentarity motivates us to explore hybrid approaches that integrate the strengths of both paradigms

while compensating for their individual weaknesses.

Based on this perspective, several key research questions arise:

• Is it possible to effectively combine conventional modeling with neural vocoders to simul-

taneously leverage their respective strengths to achieve the main goals of speech modeling?

• How to design neural architectures and training schemes that preserve interpretability and

controllability while ensuring synthesis quality and speed?

• How to build a unified system and algorithms capable of achieving parameter controllability

and speech modification?

Addressing these questions is critical for advancing the field of speech modeling, particularly

for applications requiring high-quality, editable, and real-time synthesis.

1.4 Purpose of Research

Given that no single existing method satisfies all four requirements, the purpose of this thesis is to

develop a unified speech modeling framework, namely a novel vocoder framework, that simulta-

neously satisfies four essential requirements: accurate extraction of acoustic features (amplitude,

frequency, phase), high-fidelity reconstruction and modification of speech, real-time processing

capability, and strong controllability over prosodic and temporal parameters.

To achieve this, this thesis adopts an integrative perspective to explore the integration of con-

ventional signal processing-based models with neural vocoder architectures. The objective is not

merely to combine the two, but to design a framework where interpretable representations, typ-

ically found in source-filter or sinusoidal models, can be effectively incorporated into modern

neural systems without sacrificing synthesis quality or efficiency.

Specifically, the QHM framework models speech as a sum of sparse sinusoids and allows for

efficient waveform generation based on interpretable parameters, namely, amplitude, frequency,

and phase. This makes it a powerful tool for speech analysis, synthesis, and modification. Given

our goal of leveraging deep learning for more accurate and efficient signal processing (speech

modeling), we first investigate the feasibility of the integration of neural networks and QHM

architecture by applying backpropagation to QHM structures for extracting more accurate in-

terpretable parameters, paving the way for the subsequent combination of the conventional and

neural systems. Then, we integrate QHM structure with neural networks to propose a novel hybrid

neural vocoder framework to achieve the four essential requirements of speech modeling.

By doing so, the proposed framework enables both high-quality synthesis and flexible, seman-

tically meaningful speech modification, such as pitch and time scaling. Furthermore, the system

is designed to support real-time applications like voice conversion and prosody editing, making it
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suitable for deployment in practical, latency-sensitive scenarios. Additionally, the ways to allevi-

ate the data-hungry issue are also explored.

Ultimately, this research seeks to advance the field of speech modeling by demonstrating that

interpretability and learning-based expressiveness can coexist within a cohesive, efficient, and

extensible system.

To clearly delineate the shortcomings of current methods and motivate the proposed solution,

an overview is presented in Fig. 1.4. The advantages and disadvantages of CSP and DNN are

highlighted in black and pink, respectively, where the dotted lines linking the CSP block and

DNN block mean the combination of the advantages. This figure shows the inspiration of the

combination of CSP and DNN, which is the main idea of this thesis.

1.5 Thesis Organization

Fig. 1.5 gives the structure of this thesis, showing that the rest of this thesis is organized in five

parts, as follows:

1. In Chapter II, the theories of related methods are reviewed.

(a) The development history and derivative process of the QHM methods will be elabo-

rated in detail.

(b) The details of some typical neural vodoers are introduced.

(c) The limitations of QHM methods and neural vocoders are listed.

2. Chapter III demonstrates an attempt to combine backpropagation and QHM framework for

improving the performance of parameter extraction, which further hastens the development

of BP-QHM and the improvement of the speech synthesis quality.

(a) The inspiration and derivative process of the QHM methods are demonstrated in detail.

(b) Some experiments were conducted, and their results indicate that our proposed method

outperforms conventional QHM methods in terms of parameter extraction and speech

resynthesis.

3. In Chapter III, the success of combining backpropagation and the QHM framework shows

the potential of the integration of neural networks and the QHM framework. Chapter IV

introduces novel neural vocoders (QHM-GAN and QHARMA-GAN) that integrates the ad-

vantages of neural networks and the QHM framework, significantly accelerating the pro-

cessing and improving the parameter extraction accuracy and the quality of synthesis.

(a) The inspiration and integration process are demonstrated in detail.

21



Chapter I 
General Introduction

Chapter II 
Related Work

Chapter III
Backpropagation-based

Quasi-Harmonic Modeling

Chapter IV
Neural Quasi-Harmonic

Modeling

Chapter VI
Speech Modification based

on Quasi-Harmonics

Chapter VII
Conclusions

Thesis Content Inspirations and Contributions

Speed–quality–interpretability–
controllability trade-off

Goals of speech modeling: 
paramater encoding and speech

waveform decoding

Back ground

Proposed methods
for speech modeling

Applications in
speech modification

Proposals of CSP methods and neural methods.

Prove the feasibility of combination of
CSP and DNN

Whether CSP and DNN can be combined?  

How to  combine CSP and DNN? 

Successful combination to propose
QHM-GAN and QHARMA-GAN

Propose the algorithms for speech modification.

Appilcations in time-scal and Pitch-
scale modification

Figure 1.5: The structure of the thesis.

(b) Some experiments were conducted, and their results indicate that our proposed method

integrates the advantages of conventional vocoders and neural vocoders, from the out-

performance of our proposed vocoder in interpretable parameter extraction, speech

resynthesis, and the processing effectiveness.

4. In Chapter V, the speech modification algorithms for various methods are illustrated, includ-

ing the QHM methods and our proposed methods (QHM-based neural methods).
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(a) The algorithms and pseudocode of speech modification for various methods are elabo-

rated in detail.

(b) Some experimental results will indicate the advantages and disadvantages of all meth-

ods and their applicable occasions.

5. Eventually, in Chapter VI, the conclusions are summarized. The future directions will also

be discussed.
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Chapter 2

Related Work

In this chapter, we review representative vocoders for speech synthesis, encompassing both con-

ventional vocoders and neural vocoders, along with a discussion of their respective limitations.

As introduced in Chapter I, speech signals can be viewed as a combination of harmonic com-

ponents and stochastic noise. This observation inspired the development of sinusoidal modeling

(SM), which represents speech waveforms as a sum of sinewaves. While this approach marked

a significant advancement in vocoder design, it suffers from two key limitations that impair both

modeling accuracy and resynthesis quality. First, unvoiced speech segments do not exhibit har-

monic structure but instead resemble stochastic noise, which SM cannot model effectively. Sec-

ond, SM lacks mechanisms for refining frequency estimates; therefore, if the initial frequency

estimation is inaccurate, the quality of the synthesized speech will be significantly compromised.

To address these issues, a series of QHM-based methods were proposed, which model both voiced

and unvoiced components simultaneously. These methods progressively improve the precision of

parameter extraction and achieve higher-quality speech synthesis.

Despite the advancements brought by conventional methods such as the QHM family, their

robustness remains limited. In particular, their performance degrades significantly when speech

signals are contaminated by noise. Moreover, the computational complexity introduced by their

iterative algorithms results in considerable time consumption, making them less suitable for real-

time applications. With the emergence of deep learning, neural network-based vocoders have

gained increasing attention. Among them, HiFi-GAN has emerged as a prominent and widely

adopted neural vocoder, offering both high-quality synthesis and efficient inference through a

GAN-based architecture.

Overall, QHM methods and neural vocoders such as HiFi-GAN exemplify two different para-

digms in vocoder development: conventional signal processing and data-driven modeling, respec-

tively. Each paradigm offers unique advantages and faces distinct limitations in terms of synthesis

quality, computational efficiency, and robustness. In the subsequent sections, we present a com-

prehensive overview of these two representative approaches, detailing their underlying principles,

technical implementations, and practical limitations.
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2.1 Quasi-Harmonic Model Family

As discussed in Chapter I, speech signals can be considered as a combination of harmonic compo-

nents and stochastic noise, as expressed in Eq. (1.1). Based on this assumption, the SM represents

the speech signal using a set of pure sinewaves. Although SM is conceptually intuitive and offers

interpretability, it suffers from two major limitations, significantly reducing both the modeling

accuracy and the quality of the resynthesized speech:

1) Inaccurate frequency estimation.

The SM heavily depends on prior frequency estimates fk, typically extracted from the ridges

in the spectrogram obtained by STFT. These ridges correspond to peaks in the magnitude

spectrum and are used to approximate the signal’s instantaneous frequencies. However, due

to the inherent time–frequency resolution trade-off, especially in cases of rapid pitch fluctua-

tion or closely spaced harmonics, the detected ridges often deviate from the true frequencies.

Accurate estimation further requires a large number of samples per frame, which is imprac-

tical given the high sampling rates (e.g., 16000 Hz, 24000 Hz). Even with longer frames,

true frequencies are often non-integer values, making perfect resolution unattainable. Addi-

tionally, the speech is usually strongly modulated in terms of frequency, since the vocal fold

usually vibrates with different frequencies to make the speech exhibit time-varying pitch.

However, SM uses fixed frequencies to model the speech within a frame, leading to in-

evitable mismatches in frequency estimation. Consequently, the resulting estimation errors

degrade the overall synthesis quality.

2) Inadequate modeling of unvoiced segments.

Unvoiced speech lacks harmonic structure, as it is produced without vocal fold vibration.

These segments exhibit broadband, noise-like characteristics and are inherently stochastic.

The sparse and frequency-fixed nature of sinusoidal components fails to capture such spec-

tral properties, making the SM ineffective for modeling or reconstructing unvoiced sounds.

This leads to noticeable artifacts and degraded perceptual quality in the synthesized speech.

To address these challenges, the QHM and its extensions have been proposed. With a frequency

refinement mechanism in the modeling process, QHM methods significantly improve the accu-

racy of parameter estimation. As a result, it enhances both the representational fidelity and the

resynthesis quality, making it more powerful to adapt various speech types, including both voiced

and unvoiced segments.

2.1.1 Quasi-Harmonic Model

To improve the performance of SM in modeling, the two main focuses should be addressed:

1) How to improve the frequency estimations?
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2) How to model the unvoiced part?

To address the aforementioned two limitations, a number of studies have undertaken extensive

investigations to improve the modeling accuracy. One notable advancement is proposed in [70]

to address the limitation that individual frequencies are treated as fixed within a frame and often

obtained from inaccurate pitch. Thus, the QHM [34] introduces a complex slope term to augment

the constant amplitude. This enhancement allows the model to more flexibly represent the target

speech signal and to adaptively refine the individual frequencies, thereby bringing them closer to

their true values. QHM is formulated as:

x(t) =

[
K

∑
k=−K

(ak + t bk)ei2π f̂kt

]
w(t), t ∈ [−Tl,Tl] , (2.1)

where f̂k represents the initial estimate of the k-th component’s frequency, and bk denotes its

complex slope. This formulation is referred to as QHM. In this formulation, the term tbk intro-

duces a time-dependent component that enables the model to capture subtle frequency deviations

and amplitude modulations. Consequently, the model is capable of representing speech signals

in a non-harmonic manner, thereby increasing its flexibility and improving its ability to fit the

waveform more precisely.

The Fourier transform of Eq. (2.1) can be readily derived as:

X( f ) =
K

∑
k=−K

[
akW ( f − f̂k)+ i

bk

2π

∂W
∂ f

( f − f̂k)

]
, (2.2)

where W is the Fourier transform of the window function w(t), and ∂W
∂ f denotes its derivative with

respect to frequency f . Assuming that all frequency components are sufficiently isolated such that

their frequency trajectories do not overlap, we can analyze each component independently. For

the k-th component, Eq. (2.2) simplifies to:

Xk( f ) = akW ( f − f̂k)+ i
bk

2π

∂W
∂ f

( f − f̂k). (2.3)

To interpret bk in terms of the geometric relationship with ak, we consider both as vectors

in the complex plane. The complex slope bk can be decomposed into components parallel and

perpendicular to ak:

bk = ρp,kak +ρv,kiak, (2.4)

where iak = (−aI
k,a

R
k ) represents a 90◦ rotation of ak in the complex plane. Here, aR

k and aI
k denote

the real and imaginary parts of ak, respectively. The scalar coefficients ρp,k and ρv,k correspond

to the projections of bk onto ak and iak, respectively. These projections are computed using the
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inner product as:

ρp,k =
⟨ak,bk⟩
|ak|2

=
aR

k bR
k +aI

kbI
k

|ak|2
, (2.5a)

ρv,k =
⟨iak,bk⟩
|ak|2

=
aR

k bI
k−aI

kbR
k

|ak|2
, (2.5b)

where ⟨·, ·⟩ denotes the complex inner product. Substituting Eq. (2.5) into Eq. (2.3) allows us to

express the Fourier transform of the k-th component as:

Xk( f ) = ak

[
W ( f − f̂k)−

ρv,k

2π

∂W
∂ f

( f − f̂k)+ i
ρp,k

2π

∂W
∂ f

( f − f̂k)

]
. (2.6)

Using a first-order Taylor expansion of W ( f − f̂k− ρv,k
2π

), we obtain:

W ( f − f̂k−
ρv,k

2π
) =W ( f − f̂k)−

ρv,k

2π

∂W
∂ f

( f − f̂k)+O(ρ2
v,k

∂ 2W
∂ f 2 ( f − f̂k)). (2.7)

where O(ρ2
v,k

∂ 2W
∂ f 2 ) accounts for the higher-order frequency-shift effects. Since ρv,k is assumed

small, these terms are negligible in the current approximation. Neglecting the imaginary term

i ρp,k
2π

∂W
∂ f due to its relatively small magnitude, Eq. (2.3) can be approximated as:

Xk( f ) = akW ( f − f̂k)+ i
bk

2π

∂W
∂ f

( f − f̂k)

≈ akW ( f − f̂k−
ρv,k

2π
), (2.8)

which implies that the main effect of the tbk term is to introduce a frequency shift. The inverse

Fourier transform of Eq. (2.8) gives:

xk(t)≈ akei(2π f̂k+ρv,k)t . (2.9)

This result reveals that the frequency of the k-th component has been adjusted by an amount

ρv,k/(2π) relative to the initial estimate f̂k. Denoting this frequency deviation as ηk, we have:

ηk = fk− f̂k =
ρv,k

2π
=

aR
k bI

k−aI
kbR

k
2π|ak|2

. (2.10)

Therefore, once ak and bk are obtained from the time-domain model, we can directly compute

the frequency estimation error ηk for each component. It is precisely the introduction of the tbk

term that empowers the model to account for frequency modulation through a first-order Taylor

expansion in the frequency domain. This enriched structure effectively addresses the issue of

mismatch between the analysis model and the ground truth, thereby resolving the first of the two

problems identified earlier [34].

Apart from refining the frequency components, QHM also estimates the complex amplitudes

and slopes, namely ak and bk, to further determine the amplitude and phase parameters. This
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is achieved by solving Eq. (2.1) via the least squares (LS) method, whose details are presented

below.

Let ak and bk be represented as K-dimensional vectors a and b, respectively. By concatenating

them, the parameter to be estimated is defined as:

χχχ =

[
a

b

]
. (2.11)

The cost function is defined as the error between the ground-truth signal and the QHM-generated

signal:

J(a,b) =
N

∑
n=−N

|x[n]− xQHM[n]|2

=
N

∑
n=−N

(x[n]− xQHM[n])∗ (x[n]− xQHM[n]) . (2.12)

Let the original signal without windowing be denoted as s[n], i.e., x[n] = s[n]w[n]. Then the cost

function can be rewritten as:

J(a,b) =
N

∑
n=−N

(s[n]− sQHM[n])∗w∗[n]w[n] (s[n]− sQHM[n])

= (s− sQHM)HWHW(s− sQHM), (2.13)

where W is a diagonal matrix formed from the window function, and sQHM is the synthesized

signal vector constructed based on Eq. (2.1):

sQHM = sQHM[n] =
K

∑
k=−K

(ak +nbk)ei2π fkn/ fs

=
K

∑
k=−K

akei2π fkn/ fs +nbkei2π fkn/ fs

= E0a+E1b =
[
E0|E1

][a

b

]
= Eχχχ, (2.14)

where E0 and E1 are (T ×K) matrices consisting of sinusoidal basis functions corresponding to

ak and bk, respectively.

To minimize the cost function J(a,b), we take its derivative with respect to χχχ and set it to zero:

∂J(a,b)
∂ χχχ

=
∂

∂ χχχ
(s−Eχχχ)HWHW(s−Eχχχ) = 0. (2.15)
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Solving the above equation yields the optimal solution:

χ̂χχ =

[
â

b̂

]
= (EHWHWE)−1EHWHWs. (2.16)

After estimating ak and bk, these parameters can be used to compute the frequency deviation,

which in turn allows for the adaptive correction of each component’s frequency. The updated

frequency fk is computed as:

fk = f̂k + η̂k = f̂k +
1

2π
· â

R
k b̂I

k− âI
kb̂R

k
|âk|2

, (2.17)

where ηk denotes the estimated frequency mismatch between the true and estimated values for the

k-th component. The terms âR
k and âI

k represent the real and imaginary parts of âk, respectively,

and b̂R
k and b̂I

k represent those of b̂k. This correction helps reduce the error between the original

and synthesized speech in the time domain.

For the second challenge that unvoiced speech is difficult to represent using purely harmonic

components, prior studies have investigated alternative approaches. Specifically, [38] and [3]

explored the feasibility of approximating unvoiced speech using combinations of sinewaves. The

underlying assumption is that unvoiced speech, often characterized as stochastic noise, can be

viewed as a rapidly time-varying signal with strongly modulated frequency and amplitude. To

better capture these variations, a chirp-based spectrogram can be employed using the Short-Time

Fan-Chirp Transform (STFChT) [71, 72], which is defined as:

STFChT(t,ω,α) =
∫

R
x(u)g(u− t)ξ (t,ω,α)du, (2.18)

where the kernel function ξ (t,ω,α) is given by:

ξ (t,ω,α) = e−iω[(u−t)+ α
ω
(u−t)2], (2.19)

and α denotes the chirp rate that controls the instantaneous frequency variation. The STFChT

enables enhanced visualization of time-varying frequency trajectories by incorporating the chirp

rate α , which is pre-estimated to match the dynamics of the target speech signal. As a result,

frequency components in the spectrogram are sharpened, improving interpretability. Figure 2.1

presents a comparison between conventional STFT and STFChT on a sample speech signal. In the

voiced segments, the harmonic trajectories become notably sharper and more distinct, facilitating

harmonic structure detection. Interestingly, in the unvoiced segments, the STFChT also induces

structured, harmonic-like patterns in what is conventionally considered stochastic noise. This

observation suggests that such noise components may also be decomposed into sums of modulated

sinewaves.

Motivated by this insight, [38, 3] proposed using QHM to perform unified full-band modeling
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Figure 4.9: Spectral analysis of speech. Black colored parts denote voiced speech, green colored parts denote unvoiced

speech. Upper panel: Speech signal. Middle panel: DFT-based spectrogram. Lower panel: FChT-based spectrogram.

However, SRER is commonly used as a global signal measure and thus small but pre-echo-related modelling errors at

the abrupt part of the reconstructed signal may be buried into the global modelling error. So, additionally, a local SRER

will be used in order to reveal the efficiency of the reconstruction around the pre-echo area. Experiments show that the

provide a nearly pre-echo-free representation of , without the necessity of using very short analysis window lengths for

Figure 2.1: (a) The waveform of a speech sample in [3]. (b) and (c) are the STFT and STFChT of the speech
signal, respectively.

of both voiced and unvoiced speech. Since QHM is capable of refining frequency estimates with

high precision, it can be extended to unvoiced segments by initializing the model with harmonic

frequencies. These initial frequencies are then iteratively adjusted to better conform to the com-

plex, noise-like structure of the unvoiced signal. In doing so, both voiced and unvoiced speech

can be jointly represented using sinewave components. This unified modeling approach simplifies

the analysis process and ensures continuity across different speech segments.

Although the frequencies of the components exhibit a ”stochastic” pattern in the unvoiced seg-
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ments after the frequency correction step, the estimated frequencies still remain insufficiently

close to the ground truth, even within the voiced segments. This is primarily because the initially

provided frequency values are significantly misaligned from their true counterparts, leading QHM

to struggle with accurately estimating the amplitude ak and slope bk. These inaccuracies, in turn,

compromise the frequency correction process.

To address this issue, an iterative refinement scheme based on QHM was proposed in [73]. This

approach involves multiple rounds of estimation and correction to progressively improve align-

ment with the true frequency components. The overall procedure of this iterative framework can

be summarized as follows: in the first iteration, the initial frequency estimates are provided to the

QHM model (Eq. (2.1)), from which the amplitude âk and slope b̂k are estimated using Eq. (2.16).

These estimates are then used to update the frequencies via Eq. (2.17). This completes the first

iteration. In subsequent iterations, the newly corrected frequencies are re-fed into the QHM model

to repeat the process. Through this iterative update mechanism, the estimated frequencies grad-

ually converge toward the ground truth. Notably, in unvoiced segments, the refined frequencies

begin to display a stochastic distribution, which better captures the intrinsic randomness and vari-

ability of such segments. This enhances the model’s ability to represent natural unvoiced speech.

It is important to emphasize that all of these iterative refinements are based on the standard QHM

framework, which inherently assumes frequency stationarity within each frame, that is, it treats

frequencies as constant over the analysis window. Consequently, some residual mismatch may

still exist between the corrected frequencies and their true values, particularly in highly non-

stationary segments of speech. In practice, stochastic noise can be modeled as a superposition of

multiple sinewaves whose frequencies and amplitudes vary rapidly over time. A model based on

fixed-frequency assumptions is inherently limited in its capacity to represent such signals. This

limitation is not confined to unvoiced speech alone; even voiced segments such as singing voices

often exhibit rapidly time-varying pitch trajectories. Unlike normal speech, where pitch typically

changes gradually, singing voices often require rapid transitions from low to high notes, result-

ing in much faster pitch modulation. These dynamic pitch variations are, in fact, essential to the

musicality and expressiveness of singing.

To better handle these non-stationary characteristics, an adaptive extension of QHM was pro-

posed. This adaptive version is designed to track time-varying frequencies more accurately,

thereby enhancing the model’s ability to represent both voiced and unvoiced segments with greater

fidelity.

2.1.2 Adaptive Quasi-Harmonic Model

To enhance the ability of models to align with the time-varying, modulated frequencies present

in natural speech, as mentioned above, the adaptive quasi-harmonic model (aQHM) [35] modifies

the exponential term of the QHM model by incorporating non-stationary phases, as proposed in
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[35]. The aQHM model is defined as:

x(t) =

{
K

∑
k=−K

(ak + tbk)ei[ϕ̂k(t+tl)−ϕ̂k(tl)]

}
w(t), t ∈ [−Tl,Tl] (2.20)

where ϕ̂k(t) denotes the phase function of the k-th harmonic component, and tl is the center of the

l-th analysis frame (l = 1, · · · ,L). By replacing the stationary phase term in QHM with the dy-

namically evolving phase ϕ̂k(t), aQHM aims to more accurately capture the intra-frame frequency

modulations present in natural speech. The main point of aQHM able to capture the frequency

modulations within a frame, is that aQHM uses the phase functions in the exponential part, which

is calculated from time-varying frequencies instead of the fixed frequencies. The frequencies are

obtained by interpolation, causing the time variations of the frequencies. Therefore, during the

LS, aQHM can more accurately match the signals with strong frequency modulations.

aQHM operates under an iterative framework, similar to the iterative variant of QHM, where

frequency estimates are progressively refined to approximate the true speech characteristics. Ini-

tially, QHM is used to generate a coarse estimation of the frequency trajectories. The resulting

estimates are then interpolated over successive time frames using cubic interpolation, yielding

smooth instantaneous frequencies. The corresponding instantaneous phase is subsequently com-

puted by integration:

ϕk(t) = ϕk(tl)+
∫ tl+t

tl
2π fk(u)du, t ∈ [−Tl,Tl]. (2.21)

In the next iteration, this time-varying phase function replaces the constant-phase exponential

term in the synthesis model, allowing for improved alignment with the actual speech waveform.

Then, similar to Eq. (2.14), the modified sinusoidal basis functions can be expressed as:

Ea,0 = ei(ϕk(n+tl)−ϕk(tl)), Ea,1 = nei(ϕk(n+tl)−ϕk(tl)) (2.22)

where ϕk(t) is computed from Eq. (2.21). These updated basis functions, Ea,0 and Ea,1, are

substituted into Eq. (2.16) to estimate the complex amplitude and slope. The frequencies are then

updated and serve as the input for the subsequent iteration, where a new phase trajectory is again

computed using Eq. (2.21). In each iteration, the refined model in Eq. (2.20) is applied to obtain

more accurate estimates of ak and bk. Through this recursive procedure, aQHM progressively

improves both the frequency and amplitude parameters. The estimated frequencies converge to

their true trajectories, and the complex amplitudes (ak,bk) better reflect the underlying modulated

nature of the speech signal. As a result, aQHM can synthesize speech with higher perceptual

fidelity and more accurate spectral content than conventional QHM.

Unfortunately, in many practical scenarios, the amplitude envelope of speech exhibits nonlin-

ear temporal variation, which cannot be effectively captured by linear models. Both QHM and

aQHM operate under the assumption that amplitude varies linearly within a frame, a simplification
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that limits their ability to track more intricate amplitude modulations frequently encountered in

natural speech. This limitation becomes particularly prominent in expressive or dynamic speech

segments, such as screaming or vibrato in singing, where amplitude fluctuations are rapid and

highly nonlinear. To overcome this challenge, it is necessary to extend the amplitude modeling

framework beyond the linear assumption, potentially by incorporating higher-order polynomial

terms or leveraging data-driven adaptive approaches that are capable of tracking the true nonlin-

ear amplitude dynamics of speech signals.

2.1.3 Extended Adaptive Quasi-Harmonic Model

To address the limitations of QHM and aQHM in modeling nonlinear amplitude variations, an

extended adaptive quasi-harmonic model (eaQHM) was proposed, which incorporates an explicit

amplitude modulation mechanism into the model formulation [36]:

x(t) =

{
K

∑
k=−K

(ak + tbk)
Ak(t + tl)

Ak(tl)
ei[ϕ̂k(t+tl)−ϕ̂k(tl)]

}
w(t),

t ∈ [−Tl,Tl] (2.23)

where Ak(t) denotes the time-varying amplitude of the k-th harmonic component. Unlike aQHM,

which assumes a linear amplitude variation within an analysis frame, eaQHM introduces an am-

plitude amplifier derived as the ratio between the instantaneous amplitude Ak(t + tl) and the refer-

ence amplitude at the frame center Ak(tl). This amplitude modulation term serves to nonlinearly

scale the basis functions, thereby enabling the model to more accurately capture fast or nonlin-

ear amplitude fluctuations that are prevalent in expressive or emotional speech, such as singing,

shouting, or stressed phonation. The key point of eaQHM able to extract the signals with non-

linearly modulated frequencies, is that, similar to the frequency process in aQHM, the amplitude

is interpolated into an instantaneous version, which exhibits a time-varying pattern. Then, the

time-varying amplitude will be considered during the LS optimization.

The inclusion of the amplitude amplifier enhances the flexibility of the model without changing

the analysis workflow. In practice, the implementation of eaQHM proceeds similarly to that of

aQHM. First, the QHM framework is used to obtain initial estimates of the model parameters,

including the frequencies and complex amplitudes of all components. Then, the eaQHM uses such

pre-extracted parameters to start the iterations for eaQHM. In each iteration, the model updates the

complex amplitude parameters ak and bk using the modified sinusoidal basis that now incorporates

both time-varying phase and amplitude modulation. Similar to Eq. (2.14), the sinusoidal basis

metrics for eaQHM can be obtained by

Ee,0 =
Ak(n+ tl)

Ak(tl)
ei(ϕk(n+tl)−ϕk(tl)), Ee,1 = n

Ak(n+ tl)
Ak(tl)

ei(ϕk(n+tl)−ϕk(tl)). (2.24)

The corresponding harmonic frequencies fk are also re-estimated and serve as inputs to the next it-
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eration, ensuring that both amplitude and frequency characteristics are progressively aligned with

the true underlying speech signal. Then, substituting these bases into Eq. (2.16), the estimated

complex amplitudes and slopes for eaQHM will be estimated by LS. Then, the frequencies will be

refined through the ak and bk estimated in the current iteration to get more accurate instantaneous

frequency and instantaneous phase. The same process will be conducted for amplitude. Then, the

amplitude and phase containing time variations will be the input of the analysis in the next itera-

tion. This iterative refinement continues until convergence, typically determined by the stability

of the frequency and amplitude estimates or the minimization of a modeling error criterion.

By accounting for intra-frame amplitude modulations explicitly, eaQHM significantly improves

the model’s ability to represent the dynamic nature of real speech signals. In comparison to QHM

and aQHM, which rely on more restrictive assumptions, eaQHM achieves superior performance

in both analysis and resynthesis, particularly in segments with strong prosodic variation or rapid

energy fluctuations. The enhanced model fidelity leads to synthesized speech with improved

perceptual quality and spectral consistency.

It is worth noting that in all QHM-related frameworks, including eaQHM, the modification

of frequency components across frames leads to a relaxation of the strict harmonicity condition.

That is, the resulting sinusoidal components are not constrained to be exact integer multiples of

a single fundamental frequency. This quasi-harmonic structure is especially beneficial in model-

ing unvoiced or noise-like segments of speech, where purely harmonic models fail to capture the

inherent stochasticity. Consequently, these models are termed quasi-harmonic models, empha-

sizing their ability to represent both voiced and unvoiced speech components within a sinusoidal

framework.

2.1.4 Synthesis Process of QHM Methods

The synthesis part is important for a vocoder, since it is crucial for generating high-quality speech.

As for QHM methods, the speech can be reconstructed after obtaining the complex amplitudes and

updated frequencies from the eaQHM analysis. The reconstructed speech signal is synthesized

from estimated harmonic parameters, as shown in

x̂(t) =
K

∑
k=−K

Âk(t)eiϕ̂k(t), (2.25)

where Âk(t) and ϕ̂k(t) denote the instantaneous amplitude and phase of the k-th component, re-

spectively, and the notation ˆ(·) indicates that the quantities are estimated values. This synthesis

formula mirrors the quasi-harmonic assumption by reconstructing the signal as a sum of modu-

lated sinusoids, each representing a spectral component of speech. The details of the synthesis

part are demonstrated below.

First, we need to determine the framewise parameters. Assuming that the estimated parameters
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correspond to those used in the signal representation in Eq. (2.1), and considering framewise

analysis with local coordinates centered at t = 0, the instantaneous amplitude and phase within

the frame can be expressed in terms of the complex amplitude trajectory as

Âk(t) = |âk + tb̂k|, ϕ̂k(t) = 2π fkt +∠
(
âk + tb̂k

)
, (2.26)

where âk and b̂k represent the complex amplitude and slope, estimated within the frame. Such

framewise amplitude and phase jointly determine the instantaneous amplitude envelope and the

instantaneous phase of each component. In practical implementations, since QHM-based models

operate in a framewise manner, the amplitude and phase are typically estimated and emphasized

at the center of each analysis window (i.e., t = 0). Therefore, the amplitude and phase for the l-th

frame at time tl can be written as

Âk(tl) = |âl
k|, ϕ̂k(tl) = ∠âl

k, (2.27)

where âl
k is the estimated complex amplitude of the k-th component at the l-th frame. Given these

values at the centers of all frames, the full instantaneous amplitude Âk(t) can be approximated

across the frames by linear interpolation, while the instantaneous phase trajectory ϕ̂k(t) can be

obtained by integrating the estimated instantaneous frequency f̂k(u) over time:

ϕ̃k(t) = ϕ̂k(tl)+
∫ tl+t

tl
2π f̂k(u)du. (2.28)

To ensure a smooth and natural-sounding instantaneous phase, the frequency f̂k(u) is interpolated

using cubic splines. This smooth interpolation preserves the continuity and natural variation of

the frequency curve, which is crucial for high-fidelity synthesis, particularly in expressive speech.

However, it is well known that instantaneous frequency estimation is prone to small errors, and

even with smooth interpolation, these discrepancies can accumulate during the interpolation, po-

tentially leading to discontinuities in the phase across adjacent frames. For instance, focusing on

two adjacent framewise phase ϕ(tl) and ϕ(tl+1), we can find that these two phases are computed

from the framewise complex amplitude by Eq. (2.27). Thus, if these two phases and the frequency

between the l-th and the l +1-th frames are correct, they satisfy that

ϕk(tl+1) = ϕk(tl)+
∫ tl+1

tl
2π fk(u)du. (2.29)

Nevertheless, it is hard to ensure the above equation. There must be mismatches arising during

the analysis. Such phase mismatches, especially at frame boundaries, often manifest as audible

frequency jitters in the reconstructed signal, namely the perceivable frequency distortions.

To overcome this issue, an adaptive phase compensation strategy is introduced in [35] to spread

the phase error over time in a perceptually smooth manner. Specifically, the instantaneous phase is

35



adjusted using a sinusoidal correction term, leading to the modified phase reconstruction equation:

ϕ̂k(t) = ϕ̂k(tl)+
∫ tl+t

tl

[
2π f̂k(u)+ zsin

π(u− tl−1)

tl− tl−1

]
du, (2.30)

where the added sinusoidal term dynamically adjusts the frequency trajectory such that the result-

ing phase aligns better with the target value at the next frame. The magnitude of the correction

is controlled by the coefficient z, which is calculated to minimize the phase discontinuity at the

frame boundary. The correction term z is computed by

z =
π [ϕ̂k(tl+1)+2πQ− ϕ̃k(tl+1)]

2(tl+1− tl)
, (2.31)

where Q is the integer closest to |ϕ̂k(tl+1)− ϕ̃k(tl+1)|/2π , which is calculated by

Q = round
[ |ϕ̂k(tl+1)− ϕ̃k(tl+1)|

2π

]
. (2.32)

This adjustment ensures that the integrated phase at tl+1 smoothly converges to the desired phase

estimate, avoiding sudden jumps.

This phase correction mechanism, initially proposed in [35], provides robustness against mi-

nor errors in frequency estimation, thereby enhancing the temporal coherence of the synthesized

waveform. As a result, the speech reconstructed with this method exhibits smoother transitions

and improved perceptual quality, particularly across frame boundaries where phase mismatches

are most problematic. Additionally, aQHM and eaQHM need to be iteratively extracted to obtain

the complex amplitude and complex slope, in which the accurate instantaneous frequencies and

phases are used as the input to the analysis. Thus, the accuracy of the instantaneous frequencies

and phases is crucial. Such a synthesis process with a phase compensation mechanism helps to

provide robust and accurate instantaneous phases, further ensuring the stability of the analysis.

2.1.5 Limitations of QHM Methods

QHM methods are capable of accurately extracting complex amplitudes through frequency adap-

tation, enabling high-quality speech modeling and resynthesis. Nevertheless, several limitations

still persist.

Inadequate Frequency Optimization

QHM methods rely on the f0 (also referred to as pitch) to generate individual harmonic fre-

quencies a priori, i.e., fk = k f0, where f0 is typically estimated by a pitch detection algorithm.

However, most pitch detectors assume that the analyzed signal is locally stationary within a given

window, leading to pitch estimation errors. As a result, the detected f0 is often mismatched from

the true value, introducing frequency mismatches, particularly for k = 0, as denoted by ηk in

Eq. (2.10). This error, even if it is small, becomes increasingly pronounced for higher harmonics,
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as it scales linearly with the harmonic index k:

ηk = fk− f̂k = k( f0− f̂0) = kη0, (2.33)

which inevitably deteriorates the accuracy of harmonic component extraction. This phenomenon

is especially critical in speech signals, where even subtle pitch estimation errors can lead to sig-

nificant spectral distortions in higher-order harmonics.

Fig. 2.2(a) shows the STFT of a speech signal along with the corresponding detected harmonic

frequencies. To improve readability, Fig. 2.2(b) presents a sectional view of the STFT magnitude

(in decibels) at t = 0.34 sec. We also employed the YAAPT [74] to detect the f0 trajectory, which

is also depicted in Fig. 2.2(a) and pointed out in Fig. 2.2(b). From Fig. 2.2(a), it is obvious that

a f0 mismatch exists over the frames, which increases the frequency mismatch with the increase

of the order of the harmonic components. To more specifically demonstrate this phenomenon, an

enlarged view was made in Fig. 2.2(b). As seen in the zoomed region, the detected f0 deviates

from the true value by approximately 6 Hz, which results in a significantly larger error in the

higher harmonics; for instance, the 19th harmonic exhibits a deviation of about 114 Hz.

Although QHM methods allow for iterative refinement of frequencies to reduce such mis-

matches, the convergence of this process is sensitive to the initial frequency error and the rate

of frequency variation. When the initial deviation is large or the frequency changes rapidly, the it-

erative process may struggle to correct the estimates and may even exacerbate the mismatch. This

difficulty arises because harmonics interact with their adjacent components, effectively narrowing

the main lobe width and limiting the range within which frequency corrections are feasible. A

large mismatch may cause the estimated frequency f̂k to fall within the dominant region of an

adjacent harmonic component (e.g., fk−1), rendering it uncorrectable.

Furthermore, QHM methods update the frequency by estimating the complex amplitude ak

and slope bk via LS optimization. However, when the initial frequency estimate is far from the

correct value, the LS solution tends to be biased toward neighboring spectral components, further

amplifying the frequency deviation. In other words, the result of LS is unstable if the frequency

mismatch is large, where the LS results are not accurate, further leading to the biased estimation of

frequency mismatch, which increases the frequency mismatch. Therefore, large initial deviations

may enter a feedback loop of error propagation, in which inaccurate frequency estimates corrupt

the LS solution, which in turn reinforces the incorrect frequency, leading to a deterioration in both

frequency tracking and harmonic component extraction.

To show the phenomenon mentioned above, a simulated signal with time-varying frequencies
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Figure 2.2: (a) STFT of a speech signal and the detected harmonic frequencies; (b) sectional view at t = 0.34
sec. The f0 mismatch (6 Hz) results in a 114-Hz deviation at the 19th harmonic.

was analyzed, as

x(t) =
5

∑
k=1

Ak(t)eiϕk(t), (2.34)

with ϕk(t) = φk + k
∫
(300t +150)dt,

A1 = 0.4,A2 = 0.5,A3 = 0.8,A4 = 0.5,A5 = 0.7,

where φk is randomly initialized. The f0 can be easily obtained as f0(t) = 300t +150. We added

different frequency mismatches to f0, i.e., [−10,10] and [−45,45]. We used eaQHM, which
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Figure 2.3: Frequency estimates by eaQHM using initial f0 whose mismatch ∈ [−10,10]. Only the first two
iterations and the final result, namely the 10th iteration, are shown for clarity.
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Figure 2.4: Frequency estimates by eaQHM using initial f0 whose mismatch ∈ [−45,45].

requires an iterative process. We depicted the frequencies of all components extracted by eaQHM

in Figs. 2.3 and 2.4.

Fig. 2.3 shows that when the mismatch is small, eaQHM can iteratively reduce the mismatch.

On the contrary, Fig. 2.4 shows that eaQHM found it hard to reduce the mismatch when the

mismatch is large. Besides, it can also be found in Fig. 2.4 that, in the front part, the frequency

correction was not optimal, as the small frequency spacing limited eaQHM’s ability to reduce

the mismatch. In the back part, however, the larger frequency spacing led to improved frequency

correction results.

Additionally, from these two figures, it is apparent that the frequencies were improved, but the

frequency mismatches still exist, even through the iterative improvement. That is caused by the

biased LS results, which unsatisfactorily correct the frequencies.
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Figure 2.5: Gaussian windows with different σ values.

Framewise Modeling

Most existing speech modeling approaches segment the signal into frames and analyze each frame

independently using a set of basis functions for parameter estimation. The performance of such

forward, framewise methods heavily depends on the design of the window function and the cho-

sen frame-shift. An inappropriate window configuration may impair the accuracy of parameter

estimation. For instance, the shape of the Gaussian window, which is formulated as

g(t) =
1

σ
√

2π
e−

t2
2σ , (2.35)

will be affected by the coefficient σ . Fig. 2.5 depicts the Gaussian windows with different σs.

This will affect the time resolution and frequency resolution of STFT results. It affects the connec-

tion between frames, further influencing the extraction in each frame. For instance, when the σ

is small, such as the blue line in Fig. 2.5, signals at the center of the window are amplified, while

those near the edges are attenuated. In this way, the time resolution is high, which is beneficial

for the exact analysis of the current frame. However, when conducting LS, it tends to focus more

on the signals at the center of the window, while the signals at the edges are largely disregarded.

Thus, this window is inappropriate.

Additionally, an excessively large frame-shift risks overlooking the information between adja-

cent frames, as only truncated segments of the waveform are processed individually. In QHM,
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parameters such as amplitude, frequency, and phase are extracted at the center of each frame for

resynthesis. While frequency refinement can be performed within each frame, estimation errors

in any single frame can cause deviations in interpolated parameters between frames. This issue

becomes more severe with larger frame-shifts, especially when estimation errors (e.g., ηk) are

large. For instance, if the error is significant enough to shift f̂k into the main lobe of fk−1, the LS

estimation may incorrectly adjust f̂k toward fk−1. During resynthesis, this misalignment leads to

discontinuities in the interpolated instantaneous frequency, thereby degrading the quality of the

synthesized speech.

In summary, both the reliance on initially accurate pitch detection and the inherent limitations

of framewise modeling pose challenges for QHM methods, particularly in terms of frequency

precision and inter-frame continuity. Overcoming these challenges requires either improved ini-

tialization strategies for f0, robust to local non-stationarities, or model structures that better exploit

temporal dependencies across frames to enhance estimation stability.

2.2 Neural Vocoder

As mentioned in the discussion of the limitations of QHM methods, the model structure deter-

mines the performance of the speech modeling. For instance, from QHM to eaQHM, the com-

plexity of the model increases while the performance of speech modeling is gradually improved.

However, they can not get rid of the unrobustness against to the disturbances from noise in the

waveform or the detected pitch. Namely, once the speech signals contain heavy noise or the fre-

quency estimations exhibit substantial mismatches, QHM methods struggle to model the speech

accurately. Such a limitation is widespread in conventional methods.

With the rapid development of deep learning, neural vocoders have emerged as a powerful

alternative to conventional signal processing-based speech synthesis frameworks. Unlike sinu-

soidal models that rely on a predefined parametric form to approximate the speech signal, neural

vocoders adopt a data-driven approach that learns the complex mapping from acoustic features,

typically mel-spectrograms, to the corresponding time-domain waveform. By leveraging large-

scale training data and powerful neural architectures, these models are capable of capturing both

the harmonic structure and the stochastic characteristics of speech with significantly higher fi-

delity, even in a noisy case. Therefore, the main advantage of data-driven methods, i.e., they are

usually robust, is fully demonstrated in the neural vocoders.

Early neural vocoders such as WaveNet [46] and WaveGlow [48] demonstrated the possibility

of synthesizing highly natural speech by modeling the waveform sample by sample using autore-

gressive or flow-based frameworks. While autoregressive models like WaveNet suffer from high

computational complexity and slow inference, non-autoregressive models such as WaveGlow can

achieve real-time synthesis through parallel generation, although their model sizes remain large

due to the normalizing flow architecture. To overcome remaining limitations, a class of non-
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Figure 2.6: The overall structure of GAN-based methods.

autoregressive and GAN-based vocoders has been developed. Among them, MelGAN [52] and

HiFi-GAN [4] are two representative architectures that achieve both high-quality synthesis and

real-time inference. These models are built upon a generator–discriminator paradigm, in which

the generator transforms mel-spectrograms into waveforms, while the discriminator guides the

training through adversarial learning, encouraging the generator to produce speech that is percep-

tually indistinguishable from natural speech. Fig. 2.6 is the diagram of such GAN-based methods.

Both the generator and the discriminator were trained simultaneously during the training. Addi-

tionally, in order to further accelerate the inference speed of vocoders, the conventional signal

processing algorithms, such as iSTFT, are combined with neural networks to narrow the gap be-

tween framewise parameters and sequence-wise speech signals and alleviate the pressure on the

network in learning. Typical representations, such as iSTFTnet [75] and Vocos [5], adopt neural

networks to estimate complex spectrograms, which will be inverted into speech waveforms by

iSTFT, based on the GAN structure.

In the following, we introduce the architecture and training strategies of HiFi-GAN and Vocos,

which are recent successful GAN-based vocoders, and analyze how its key components contribute

to the high-quality synthesis of speech signals across both voiced and unvoiced segments.

2.2.1 HiFi-GAN: High-Fidelity Generative Adversarial Network

HiFi-GAN [4] is a high-fidelity neural vocoder that directly converts mel-spectrograms to time-

domain waveforms, achieving high-quality and efficient waveform generation. The overall ar-

chitecture of HiFi-GAN consists of a generator and a set of discriminators trained adversarially.

The generator is responsible for synthesizing waveforms from acoustic features, while the dis-

criminators guide the generator by distinguishing real speech from synthetic ones from multiple

perspectives.
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Figure 1: The generator upsamples mel-spectrograms up to |ku| times to match the temporal resolution
of raw waveforms. A MRF module adds features from |kr| residual blocks of different kernel sizes
and dilation rates. Lastly, the n-th residual block with kernel size kr[n] and dilation rates Dr[n] in a
MRF module is depicted.

field fusion (MRF) module, which we describe in the next paragraph. Figure 1 shows the architecture
of the generator. As in previous work (Mathieu et al., 2015, Isola et al., 2017, Kumar et al., 2019),
noise is not given to the generator as an additional input.

Multi-Receptive Field Fusion We design the multi-receptive field fusion (MRF) module for our
generator, which observes patterns of various lengths in parallel. Specifically, MRF module returns
the sum of outputs from multiple residual blocks. Different kernel sizes and dilation rates are selected
for each residual block to form diverse receptive field patterns. The architectures of MRF module
and a residual block are shown in Figure 1. We left some adjustable parameters in the generator; the
hidden dimension hu, kernel sizes ku of the transposed convolutions, kernel sizes kr, and dilation
rates Dr of MRF modules can be regulated to match one’s own requirement in a trade-off between
synthesis efficiency and sample quality.

2.3 Discriminator

Identifying long-term dependencies is the key for modeling realistic speech audio. For example,
a phoneme duration can be longer than 100 ms, resulting in high correlation between more than
2,200 adjacent samples in the raw waveform. This problem has been addressed in the previous
work (Donahue et al., 2018) by increasing receptive fields of the generator and discriminator. We
focus on another crucial problem that has yet been resolved; as speech audio consists of sinusoidal
signals with various periods, the diverse periodic patterns underlying in the audio data need to be
identified.

To this end, we propose the multi-period discriminator (MPD) consisting of several sub-discriminators
each handling a portion of periodic signals of input audio. Additionally, to capture consecutive patterns
and long-term dependencies, we use the multi-scale discriminator (MSD) proposed in MelGAN
(Kumar et al., 2019), which consecutively evaluates audio samples at different levels. We conducted
simple experiments to show the ability of MPD and MSD to capture periodic patterns, and the results
can be found in Appendix B.

Multi-Period Discriminator MPD is a mixture of sub-discriminators, each of which only accepts
equally spaced samples of an input audio; the space is given as period p. The sub-discriminators
are designed to capture different implicit structures from each other by looking at different parts
of an input audio. We set the periods to [2, 3, 5, 7, 11] to avoid overlaps as much as possible. As
shown in Figure 2b, we first reshape 1D raw audio of length T into 2D data of height T/p and width
p and then apply 2D convolutions to the reshaped data. In every convolutional layer of MPD, we
restrict the kernel size in the width axis to be 1 to process the periodic samples independently. Each
sub-discriminator is a stack of strided convolutional layers with leaky rectified linear unit (ReLU)
activation. Subsequently, weight normalization (Salimans and Kingma, 2016) is applied to MPD. By
reshaping the input audio into 2D data instead of sampling periodic signals of audio, gradients from
MPD can be delivered to all time steps of the input audio.

3

Figure 2.7: The structure of the HiFi-GAN generator in [4]. The generator upsamples mel-spectrograms up
to |ku| times to match the temporal resolution of raw waveforms. A MRF module adds features from |kr|
residual blocks of different kernel sizes and dilation rates. Lastly, the n-th residual block with kernel size
kr[n] and dilation rates Dr[n] in an MRF module is depicted.

Generator Architecture: To introduce the structure of the HiFi-GAN generator in detail, Fig. 2.7

is shown to specify the details. The generator in HiFi-GAN adopts a hierarchical structure that

progressively upsamples the input mel-spectrogram to waveform resolution. The upsampling is

performed by a cascade of transposed convolution layers, each increasing the temporal resolution

by a fixed factor ku. After each transposed convolution, the intermediate feature is passed through

a Multi-Receptive Field Fusion (MRF) module, which is designed to enrich the receptive field

and capture temporal dependencies at multiple resolutions. Each MRF module comprises several

parallel residual blocks, and each residual block uses a different kernel size kr and dilation Dr

configuration. This design allows the model to capture fine-grained and long-term dependencies

simultaneously, as smaller kernels focus on local detail while larger dilations cover broader con-

texts. Specifically, each residual block within MRF follows a structure of two 1D convolution

layers with LeakyReLU activations and skip connections. The use of grouped convolutions in

these blocks reduces the computational cost while maintaining representational capacity. This

multi-resolution design is particularly beneficial in modeling the quasi-periodic and multi-scale

nature of speech signals, allowing the generator to flexibly model both the harmonic structure and

stochastic components of speech. Moreover, the progressive upsampling architecture ensures that

each stage works at an appropriate temporal scale, facilitating stable training and fast inference.

Discriminator Design: To effectively supervise the generator and ensure high perceptual quality,

HiFi-GAN employs a set of discriminators: the Multi-Scale Discriminator (MSD) and the Multi-

Period Discriminator (MPD), whose structures were illustrated in Fig. 2.8. The MSD consists

of several sub-discriminators operating on waveforms downsampled to different temporal reso-

lutions. This enables the model to evaluate both the local and global structure of the waveform,

ensuring coherence at different timescales.

The MPD, on the other hand, slices the waveform into periodic segments with different pre-

defined periods (e.g., 2, 3, 5, 7 samples per period) and applies discriminators to each segment.
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(a) (b)

Figure 2: (a) The second sub-discriminator of MSD. (b) The second sub-discriminator of MPD with
period 3.

Multi-Scale Discriminator Because each sub-discriminator in MPD only accepts disjoint samples,
we add MSD to consecutively evaluate the audio sequence. The architecture of MSD is drawn from
that of MelGAN (Kumar et al., 2019). MSD is a mixture of three sub-discriminators operating on
different input scales: raw audio, ×2 average-pooled audio, and ×4 average-pooled audio, as shown
in Figure 2a. Each of the sub-discriminators in MSD is a stack of strided and grouped convolutional
layers with leaky ReLU activation. The discriminator size is increased by reducing stride and adding
more layers. Weight normalization is applied except for the first sub-discriminator, which operates on
raw audio. Instead, spectral normalization (Miyato et al., 2018) is applied and stabilizes training as it
reported.

Note that MPD operates on disjoint samples of raw waveforms, whereas MSD operates on smoothed
waveforms.

For previous work using multi-discriminator architecture such as MPD and MSD, Bińkowski et al.
(2019)’s work can also be referred. The discriminator architecture proposed in the work has resem-
blance to MPD and MSD in that it is a mixture of discriminators, but MPD and MSD are Markovian
window-based fully unconditional discriminator, whereas it averages the output and has conditional
discriminators. Also, the resemblance between MPD and RWD (Bińkowski et al., 2019) can be
considered in the part of reshaping input audio, but MPD uses periods set to prime numbers to
discriminate data of as many periods as possible, whereas RWD uses reshape factors of overlapped
periods and does not handle each channel of the reshaped data separately, which are different from
what MPD is aimed for. A variation of RWD can perform a similar operation to MPD, but it is also
not the same as MPD in terms of parameter sharing and strided convolution to adjacent signals. More
details of the architectural difference can be found in Appendix C.

2.4 Training Loss Terms

GAN Loss For brevity, we describe our discriminators, MSD and MPD, as one discriminator
throughout Section 2.4. For the generator and discriminator, the training objectives follow LS-
GAN (Mao et al., 2017), which replace the binary cross-entropy terms of the original GAN objec-
tives (Goodfellow et al., 2014) with least squares loss functions for non-vanishing gradient flows.
The discriminator is trained to classify ground truth samples to 1, and the samples synthesized from
the generator to 0. The generator is trained to fake the discriminator by updating the sample quality
to be classified to a value almost equal to 1. GAN losses for the generator G and the discriminator D
are defined as

LAdv(D;G) = E(x,s)

[
(D(x)− 1)2 + (D(G(s)))2

]
(1)

LAdv(G;D) = Es

[
(D(G(s))− 1)2

]
(2)
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Figure 2.8: (a) The second sub-discriminator of MSD and (b) the second sub-discriminator of MPD with
period 3 in [4].

This periodic slicing is motivated by the observation that voiced speech contains strong periodic-

ity, particularly in voiced segments where the pitch structure dominates. By evaluating periodic

patterns explicitly, MPD can guide the generator to produce harmonically consistent waveforms,

especially in voiced segments.

Training Objectives: The generator and discriminator are jointly optimized in an adversarial

framework. The generator is trained using a weighted combination of adversarial loss Lg,adv,

feature matching loss Lfm, and mel-spectrogram reconstruction loss Lmel:

LG = Lg,adv +λfmLfm +λmelLmel, (2.36)

where λfm and λmel are hyperparameters that balance the contribution of each term. The feature

matching loss Lfm stabilizes training by minimizing the L1 distance between the discriminator

feature maps of real and generated samples, while the mel-spectrogram loss Lmel ensures that the

generated waveform maintains acoustic fidelity in the perceptual domain.

The discriminators are trained with a standard adversarial loss Ld,adv, summed over all sub-

discriminators in both MPD and MSD. This multi-view adversarial supervision encourages the

generator to produce speech that is both globally natural and locally periodic.

Advantages and Limitations: Compared with earlier GAN-based vocoders such as MelGAN,

HiFi-GAN significantly improves speech fidelity while maintaining fast inference speed. The

key improvement lies in the introduction of the MRF modules and the dual discriminator archi-

tecture. In MelGAN, each residual block has a fixed receptive field, which limits its ability to

model both local detail and global structure. HiFi-GAN overcomes this by combining multiple

receptive fields in parallel, thereby capturing speech characteristics at multiple temporal scales.
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Additionally, MelGAN relies solely on MSD, whereas HiFi-GAN introduces the MPD to exploit

pitch periodicity, which proves highly effective in producing periodically rich speech. Moreover,

although models like WaveNet or WaveGlow achieve high audio quality, they are computation-

ally expensive and unsuitable for real-time applications. HiFi-GAN, through careful architectural

simplification and the use of grouped convolutions and transposed convolutions, offers a balance

between audio quality and computational efficiency. It supports real-time inference on modern

GPUs.

Despite its advantages, HiFi-GAN also has some limitations. Its generator is an end-to-end

structure, lacking an interpretable structure that reflects the intrinsic structure of speech signals,

such as the source-filter structure. Without external f0 information, HiFi-GAN cannot extrapolate

pitch contours beyond the training distribution. Although some variants [76, 77] incorporate f0

as an additional condition, such control remains constrained by the coverage of the training data.

Furthermore, although HiFi-GAN almost supports real-time processing, the generation speed is

still limited, hindering the deployment on a lightweight device. This is caused by the transposed

convolutions between MRF modules. The convolutions in MRF modules increasingly become

heavy as the number of upsampling increases. For example, in the first MRF, the convolutions

are conducted based on the framewise data, while the convolutions in the last MRF are based on

sequence-wise data.

In summary, the MRF modules and MPD enable a high-fidelity and fast waveform generation,

setting a strong baseline for neural vocoding.

2.2.2 Vocos

HiFi-GAN has already achieved a relative high-quality and high-speed speech synthesis, however,

the upsampling process in HiFi-GAN somewhat hinders the generation speed while its end-to-end

architecture increases the pressure of study. HiFi-GAN needs to learn the intrinsic structures of

speech, such as harmonic patterns, from scratch, since the input (mel-spectrogram) and the output

(speech waveform) are in different domains, meaning that the network should face a challenge in

converting data across domains, which inevitably increases the burden of learning. To overcome

such issues, many studies were conducted to employ the conventional algorithm in the neural

vocoder, such as Vocos [5] and iSTFTnet [75].

Among recent advances in such vocoders, Vocos proposes a novel Fourier-based architecture

that effectively closes the gap between conventional spectral vocoders and modern time-domain

GAN-based methods. Unlike HiFi-GAN and its variants, which directly generate time-domain

waveforms using a series of transposed convolutions and adversarial training, Vocos formulates

speech synthesis in the frequency domain. Specifically, Vocos learns to predict both the magnitude

and phase of the complex spectrogram and reconstructs the waveform using an inverse STFT

module that is fully differentiable. Similarly, iSTFTnet also adopts such a framework; however,
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Figure 2: Comparison of a typical time-domain GAN vocoder (a), with the proposed Vocos architec-
ture (b) that maintains the same temporal resolution across all layers. Time-domain vocoders use
transposed convolutions to sequentially upsample the signal to the desired sample rate. In contrast,
Vocos achieves this by using a computationally efficient inverse Fourier transform.

the upsample operation is realized solely through the fast inverse STFT. This approach permits
a unique model design compared to time-domain vocoders, which typically employ a series of
upsampling layers to inflate input features to the target waveform’s resolution, often necessitating
upscaling by several hundred times. In contrast, Vocos maintains the same temporal resolution
throughout the network (Figure 2). This design, known as an isotropic architecture, has been found to
work well in various settings, including Transformer (Vaswani et al., 2017). This approach can also
be particularly beneficial for audio synthesis. Traditional methods often use transposed convolutions
that can introduce aliasing artifacts, necessitating additional measures to mitigate the issue (Karras
et al., 2021; Lee et al., 2022). Vocos eliminates learnable upsampling layers, and instead employs the
well-establish inverse Fourier transform to reconstruct the original-scale waveform. In the context of
converting mel-spectrograms into audio signal, the temporal resolution is dictated by the hop size of
the STFT.

Vocos uses the Short-Time Fourier Transform (STFT) to represent audio signals in the time-frequency
domain:

STFTx[m, k] =
N−1∑

n=0

x[n]w[n−m]e−j2πkn/N (1)

The STFT applies the Fourier transform to successive windowed sections of the signal. In practice,
the STFT is computed by taking a sequence of Fast Fourier Transforms (FFTs) on overlapping,
windowed frames of data, which are created as the window function advances or “hops” through
time.

3.2 MODEL

Backbone Vocos adapts ConvNeXt (Liu et al., 2022) as the foundational backbone for the generator.
It first embeds the input features into a hidden dimensionality and then applies a stack of 1D
convolutional blocks. Each block consists of a depthwise convolution, followed by an inverted
bottleneck that projects features into a higher dimensionality using pointwise convolution. GELU
(Gaussian Error Linear Unit) activations are used within the bottleneck, and Layer Normalization is
employed between the blocks.

4

Figure 2.9: The structure of Vocos generator in [5].

it still employs the transposed convolution layers to upsample the data. Therefore, the generated

speed is still limited. In contrast, the non-upsampling architecture of Vocos benefits from the fast

inversion of STFT, allowing for the high-efficiency generation. Besides, such a framework also

provides the interpretability from the spectrogram, which contains the physical meaning, allowing

the model to focus on spectral coherence rather than waveform precision.

Generator Architecture: The generator architecture of Vocos consists of two main components:

a neural spectrogram estimator and an iSTFT-based reconstruction module, as shown in Fig. 2.9.

The spectrogram estimator is typically implemented using a stack of ConvNeXt [78], which maps

a sequence of mel-spectrogram frames to a sequence of complex-valued STFT coefficients. To

model the phase component more effectively, Vocos adopts a phase prediction strategy where the

real and imaginary parts can be obtained from the estimated phases and amplitudes, allowing

the network to learn harmonic phase relationships in a data-driven manner. Once the complex

spectrogram is predicted, waveform reconstruction is performed by applying the inverse STFT

using overlap-add synthesis.

Discriminator Design: Regarding the discriminator, compared to HiFi-GAN, a novel sub-dis-

criminator is employed, i.e., the multi-resolution discriminator [6]. The discriminator consists of

MPD and MSD, where the configuration of MPD is the same as that of HiFi-GAN, as shown in

Fig. 2.10. MSD uses different sets of parameters, such as frame-shift and number of Fast Fourier

Transform (nfft), to generate the spectrograms of generated speech in different time-frequency
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(a) Generator (b) Discriminators

Figure 1: UnivNet architecture. ‘STFT #m’ denotes the process of computing a linear spectrogram magnitude using the m-th STFT
parameter set. ‘reshape2d(p)’ denotes the process of reshaping a 1-D signal of length T to a 2-D signal of height T/p and width p.

3. Description of the proposed model
3.1. Generator

Our generator G is inspired by MelGAN[11, 23]. A noise se-
quence z is used as the input, and a log-mel-spectrogram c is
used as the condition. The length of z is the same as that of c,
and the length of the output x̂ is the same as that of the target
waveform x owing to transposed convolutions.

To efficiently capture the local information of the condition,
location-variable convolution (LVC)[14] was added, which ob-
tained better sound quality and speed while maintaining the
model size. The kernels of the LVC layers are predicted using a
kernel predictor that takes the log-mel-spectrogram as the input.
As shown in Figure 1(a), the kernel predictor is connected to a
residual stack. One kernel predictor simultaneously predicts the
kernels of all LVC layers in one residual stack. Through inter-
nal experiments, we carefully decided on the optimal location
and number of the LVC layers as well as the kernel predictors
in terms of sound quality and generation speed. To improve
the generality of the multi-speaker dataset, a gated activation
unit (GAU)[24] was added to each residual connection. It was
effective in increasing the nonlinearity in WaveNet[16], and it
has also been used in various other studies[12, 14, 18, 19, 22].

3.2. Discriminators

Our discriminators D shown in Figure 1(b) employ multiple
spectrograms and reshaped waveforms computed from real or
generated signals. First, we propose a multi-resolution spec-
trogram discriminator (MRSD). To serve as input for each m-
th sub-discriminator, M real or generated linear spectrogram
magnitudes {sm=|FTm(x)|, ŝm=|FTm(x̂)|}Mm=1 were com-
puted from the same waveform using M STFT parameter sets
{FTm(·)}Mm=1, with each including the number of points in
the Fourier transform, frame shift interval, and window length.
There is a conceptual similar work[15] that discriminates one
spectral information by dividing it into several bands using a
filter bank. The difference is that MRSD employes multiple

spectrograms with various temporal and spectral resolutions, so
we expect to generate high-resolution signals over the full-band.
The model architecture is inspired by a multi-scale waveform
discriminator (MSWD)[11] and consists of strided 2-D convo-
lutions and leaky rectified linear unit (LReLU)[25].

To improve detailed adversarial modeling in the tempo-
ral domain, we added a multi-period waveform discriminator
(MPWD)[13]. The periodic components of the waveform are
extracted at intervals of a set of prime numbers and used as the
input to each sub-discriminator.

3.3. Training losses

Multi-resolution STFT loss[12] is used as an auxiliary loss to
train the model; it corresponds to the sum of multiple spectro-
gram losses computed using various STFT parameter sets. The
lossLaux, comprising the spectral convergence lossLsc and log
STFT magnitude loss Lmag, is defined as follows:

Lsc(s, ŝ) =
‖s− ŝ‖F
‖s‖F

, Lmag(s, ŝ) =
1

S
‖log s− log ŝ‖1

(1)

Laux(x, x̂) =
1

M

M∑

m=1

Ex,x̂

[
Lsc(sm, ŝm) + Lmag(sm, ŝm)

]

(2)
where ‖ · ‖F and ‖ · ‖1 denote the Frobenius and L1 norms,
respectively, and S denotes the number of elements in the spec-
trogram. Eachm-th Lsc and Lmag reuse sm and ŝm used in the
m-th MRSD sub-discriminator. The number of each loss is M ,
which is the same as the number of MRSD sub-discriminators.

We used the objective functions of least-squares GAN[26]
for this study. Our overall objectives are defined as follows:

LG = λLaux(x, G(z, c)) +
1

K

K∑

k=1

Ez,c[(Dk(G(z, c))− 1)2]

(3)

LD =
1

K

K∑

k=1

(Ex[(Dk(x)−1)2]+Ez,c[Dk(G(z, c))2]) (4)

Figure 2.10: The structure of Vocos discriminators in [6].

resolutions and distinguish them from those of ground truth. In such a way, the spectral structure

is more focused, and the generated speech will be perceptually better. Since the humans is much

more sensitive to frequencies instead of the waveform in the time domain.

The configurations of training objectives are the same as those of HiFi-GAN.

Advantages and Limitations: One of the key contributions of Vocos is to reduce the burden on the

neural network. Time-domain models like HiFi-GAN must implicitly learn waveform periodic-

ity, harmonicity, and phase structure through deep upsampling layers, which are computationally

expensive and prone to overfitting. In contrast, Vocos explicitly leverages the Fourier transform,

allowing it to work in a domain where harmonic and noise components are more naturally sepa-

rable. As a result, the generator only needs to model the spectral structure of speech, while the

deterministic iSTFT ensures accurate waveform recovery. By getting rid of transposed convolu-

tions, Vocos simplifies the inference flow, significantly accelerates inference speed, and achieves

faster generation than HiFi-GAN.
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However, Vocos still does not adopt a source-filter-based framework; thus, the controllable

parameters are still not transparent, leading to the failure of the speech modification, such as

pitch-scale modification and time-scale modification. Moreover, Vocos still suffers from the data-

hungry issue, which means that Vocos needs a large amount of training data to avoid overfitting

and ensure a good generalization ability. Although HiFi-GAN’s generalization is highly data-

dependent, apparently worse than Vocos, Vocos tends to degrade significantly in low-resource or

out-of-distribution scenarios.

2.2.3 Hn-NSF: Harmonic plus noise Neural Source-Filter model

HiFi-GAN and Vocos have achieved impressive speech synthesis quality and speed. Since HiFi-

GAN and Vocos have no input of the extra acoustic feature, such as f0, to the neural network, it

faces the challenging task of speech manipulation, especially f0 extrapolation. To mitigate these

challenges, neural vocoders that integrate conventional signal processing insights with the source-

filter framework have been proposed, among which the Harmonic plus noise Neural Source-Filter

model (hn-NSF) [7] stands out as a principled approach based on the classic source-filter theory

of speech production.

Hn-NSF explicitly decomposes speech synthesis into two components: a harmonic source mod-

ule that generates periodic excitation signals driven by the f0, and a noise source module that

captures stochastic components such as unvoiced segments and aperiodicities. These excitation

signals are then shaped by a neural network-based filter module that models the vocal tract reso-

nances. By explicitly incorporating this physical prior knowledge, hn-NSF reduces the difficulty

of directly modeling complex waveforms and improves interpretability and controllability in syn-

thesis.

Generator Architecture: The generator of hn-NSF consists of two parts. The source module

generates an excitation signal conditioned on the input f0 and the noise. Finally, a neural vocal

tract filter network, often implemented as a stack of convolutional layers or residual blocks, filters

the excitation signals and predicts the time-domain waveform. Fig. 2.11 shows the details of the

hn-NSF generator. The acoustic feature is input into the condition module to generate the vocal

tract filter, while the excitation signal is generated from the source module. Finally, the speech is

generated with voicing flags.

Loss and Discriminator Design: Unlike some GAN-based vocoders that employ multi-scale or

multi-period discriminators directly on waveforms, Hn-NSF often uses a multi-resolution spectral

amplitude distance as the loss function to measure the distance between generated speech and the

ground truth. However, with the development of the GAN-based methods, the discriminator and

its auxiliary loss functions are also employed during the training. A straightforward way is to use

the same configurations of discriminators and loss functions as HiFi-GAN (MSD + MPD).
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Figure 2.11: The structure of hn-NSF generator in [7].

Advantages and Limitations: A key advantage of Hn-NSF lies in its physically motivated source-

filter decomposition, which reduces the complexity of learning by providing clear inductive bi-

ases. This results in improved interpretability and controllability: parameters such as f0 and noise

components can be explicitly manipulated for expressive synthesis or pitch-scale speech mod-

ification. Moreover, Hn-NSF often exhibits better robustness in low-resource or multi-speaker

settings compared to fully end-to-end time-domain models.

However, hn-NSF remains inherently constrained by the black-box nature of neural networks,

which inevitably limits its capacity for interpretable acoustic feature manipulation. For example,

although hn-NSF supports pitch ( f0) modification, it does not explicitly extract or model ampli-

tude information, which restricts its ability to control loudness. Moreover, the filter module in

hn-NSF is implemented as a fully data-driven, non-transparent neural component, offering no

guarantee of accurate or stable spectral envelope modeling. As a result, the overall synthesis qual-

ity may suffer, particularly under large pitch-scale transformations. These limitations are evident

in the experimental analyses presented in Chapters IV and V.

Therefore, it becomes essential to explore a more interpretable neural vocoder framework that

not only retains the flexibility and robustness of deep learning models but also enables fine-grained

and transparent control over acoustic features. Such a framework would significantly enhance

both the performance and versatility of speech modeling, paving the way for more effective syn-

thesis, modification, and voice transformation applications.

2.2.4 Limitations of Neural Vocoders

While neural vocoders such as HiFi-GAN and Vocos have achieved impressive performance in

terms of speech naturalness and synthesis speed, several inherent limitations persist. These limita-

tions come from their data-driven nature, network structure, lack of interpretability, and difficulty

in explicit control over acoustic features. In the following part, we discuss the key challenges

faced by current neural vocoders.
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Requirement of Extensive Training

Conventional vocoders, such as QHM methods, WORLD, and STRAIGHT, are built on signal

processing, even the established principles of speech production in source-filter vocoders. These

models typically rely on signal processing algorithms and do not require learning from data.

In contrast, neural vocoders are entirely data-driven and must be trained on large-scale paired

datasets of acoustic features and corresponding waveforms. The quality of a neural vocoder is

thus highly dependent on the size, diversity, and quality of its training corpus. Without sufficient

data, especially across speakers or prosodic conditions, the performance of neural vocoders de-

grades. In contrast, conventional vocoders offer greater modularity for a system and are more

deployable in practical engineering applications.

Poor Generalization Ability

As discussed above, neural vocoders need sufficient speech data to learn. Moreover, neural

vocoders often struggle to generalize satisfactory speech that is unseen during the training. In

general, neural vocoders demand substantial amounts of training data; otherwise, they easily suf-

fer from overfitting. For example, although HiFi-GAN is able to generate speech of great high

quality, it has shown difficulty in the generation of speech unseen during the training. Even ex-

trapolating f0 values beyond the range of the training data is hard for HiFi-GAN, leading to poor

synthesis in high-pitch singing voices. Similarly, Vocos, while leveraging the STFT framework

to ease spectral modeling, relies on neural networks to predict the amplitude and phase of the

complex spectrogram, and these predictions are also biased by the training distribution. The same

limitations happen in hn-NSF. As a result, neural vocoders are prone to overfitting and may gen-

erate distortions or unnatural speech when presented with unseen inputs, even out-of-distribution

inputs. A straightforward way to overcome this issue is to prepare sufficient data for training, i.e.,

including different languages, different genders, and different speakers. However, constructing

such a large, clean, and effective speech dataset often requires considerable human and material

resources, involving careful recording, manual annotation, and quality control, all of which are

time-consuming and costly. As a result, obtaining large-scale, high-fidelity speech data suitable

for robust modeling remains a major challenge. Thus, another way to alleviate this problem is to

try to improve the generalization ability of neural vocoders.

Lack of Interpretability

One of the most significant limitations of neural vocoders is their black-box nature. Unlike con-

ventional vocoders, where each parameter (e.g., pitch, formant frequency, amplitude, and phase)

has a clear acoustic meaning, the internal activations of neural networks are often opaque. Al-

though components, such as the MRF module in HiFi-GAN, attempt to represent the meaningful

waveforms and decompose the modeling task into interpretable stages, the learned representations
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themselves remain abstract. Fortunately, vocoders such as Vocos, which combine conventional

transformations (STFT), can generate complex spectrograms relatively well to initially reveal the

structure of the speech signal, while hn-NSF absorbs the f0 to achieve pitch control of the syn-

thesized speech. However, the effect is still not significant. This lack of interpretability makes it

difficult to achieve the goal of speech modeling. The intrinsic models or components for speech

cannot be extracted; therefore, the structure of the speech is still not transparent. This hinders the

exploration of speech.

Absence of Explicit, Editable Parameters

Conventional vocoders allow for explicit control over acoustic features such as pitch, duration, or

timbre, enabling flexible manipulation of speech. For instance, pitch can be shifted by scaling f0,

and time duration can be altered by modifying segment boundaries or interpolating the features.

This enables conventional methods to be applied in various practical engineering tasks, such as

pitch modification in singing or slowing down speech to improve intelligibility. In contrast, neural

vocoders typically take mel-spectrograms as input and directly produce waveform samples. Even

Vocos estimates the spectrogram using the opaque networks. These intermediate features do not

retain parameters that correspond to intuitive aspects of speech. Although the source-filter-based

neural vocoders, such as hn-NSF, also input the f0 to control the intonation of the speech, the

performance is still limited due to their black box nature. As a result, it is challenging to perform

freewheeling edits, such as pitch modification or time-stretching, since there are no accessible

control handles. Particularly, the f0 extrapolation is in great need of human communication, for

instance, the application in speaking aids for patients with laryngeal illness. The most neural

vocoders fail to achieve this task. Although some attempts have been made to incorporate f0 or

prosody embeddings into the model, i.e., some neural vocoders are built on the basis of the source-

filter structure, the common weak point of neural models in generalization ability hinder them

from achieving a satisfactory performance. Since such controls are often effective only within the

statistical bounds of the training data and do not guarantee interpretability or reliability.

2.3 Summary

This chapter shows the details and its limitations of some representations of conventional vocoders

and neural vocoders.

For the conventional vocoders, the QHM and its extensions, i.e., aQHM and eaQHM, are fully

introduced and discussed in terms of advantages and disadvantages. QHM methods has the ca-

pacity of modeling the structures of speech signals, enabling humans to manipulate the speech.

Specifically, the speech signals can be modeled as the sum of several sinewaves with their ampli-

tudes, frequencies, and phases accurately extracted. Moreover, although the analysis part (mod-

eling the speech waveforms to the acoustic features) is time-consuming, the synthesis part is ef-
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ficient, which generates the speech using only the framewise amplitudes, frequencies, and phase,

and can be applied to achieve real-time speech generation. Unfortunately, they are fundamentally

limited by their dependence on accurate pitch ( f0) estimation, which is often compromised by

local non-stationarities in speech. Even small pitch errors can cause significant frequency mis-

matches in higher harmonics, degrading spectral precision. Although iterative refinement (e.g.,

eaQHM) can reduce these mismatches, convergence is highly sensitive to the initial frequency

error and local frequency spacing. Large deviations can lead to biased LS estimates that reinforce

incorrect frequencies, creating a feedback loop of error amplification. Furthermore, QHM oper-

ates in a framewise manner, where modeling performance is tightly coupled to window design

and frame-shift configuration. Poor choices in these parameters can compromise both intra-frame

estimation and inter-frame continuity, ultimately degrading synthesis quality.

Neural vocoders, on the other hand, have greatly advanced speech synthesis quality but face

their own challenges. They utilize a large amount of data to achieve a great generalization ability,

which is usually greater than conventional methods. Besides, a sophisticatedly designed structure

only needs several simple computations, such as addition and convolutions, to efficiently estimate

the output. This undoubtedly accelerates the speech synthesis if such a neural network can be

employed. On the contrary, they face limitations that include heavy dependence on large, diverse

training datasets, limited generalization to unseen conditions, lack of interpretability, and the

difficulty in controlling acoustic features such as pitch and timbre. Such drawbacks hinder their

adaptability and controllability in fine-grained speech synthesis tasks.

In essence, QHM offers interpretability and explicit parameter control but struggles with ro-

bustness and continuity, while neural vocoders offer high-quality synthesis but at the cost of

transparency and controllability. These complementary limitations motivate the development of

hybrid or alternative models that combine the interpretability and precision of signal models with

the generative power of neural networks. As a preliminary step toward such integration, the next

section investigates whether QHM can be combined with the backpropagation method, allow-

ing us to examine the feasibility of bridging explicit quasi-harmonic modeling with data-driven

optimization. This exploratory attempt lays the groundwork for the more comprehensive hybrid

vocoder framework developed in Chapter IV.

52



Chapter 3

Backpropagation-based
Quasi-Harmonic Modeling

3.1 Introduction

Building on the discussion in Chapter II, this chapter explores the integration of the backpropa-

gation (BP) method into the QHM framework as a means to overcome the limitations of existing

QHM methods. Specifically, conventional QHM methods suffer from large frequency mismatches

that deteriorate performance, as well as framewise modeling strategies that compromise continuity

and accuracy in speech representation. By reformulating QHM within a differentiable framework,

we aim to investigate whether explicit sinusoidal modeling can benefit from data-driven optimiza-

tion, thereby setting the stage for the more comprehensive hybrid model developed in the next

work.

First, a spectrogram-based frequency refinement algorithm is introduced to enhance frequency

correction performance. Rather than relying on least-squares optimization results, this method

leverages a fixed spectrogram extracted from the speech waveform to refine frequency estimates.

An iterative correction mechanism is employed to progressively align the frequency estimates

with the ground truth. This approach is particularly effective in handling nonstationary signals

characterized by strong modulations in both frequency and amplitude.

Second, backpropagation is applied to the QHM synthesis process to obtain more accurate

estimates of complex amplitudes and frequencies. Unlike conventional frame-by-frame forward

estimation, the proposed approach defines a sequence-level waveform loss function to quantify the

discrepancy between the synthesized and reference waveforms. Gradients are propagated through

the entire quasi-harmonic synthesis pipeline, enabling the frame-wise parameters to be updated in

a global and coherent manner. To promote effective convergence and maintain a balance between

frequency and amplitude estimation, two separate optimizers are employed, each tailored to its

respective parameter type. This coordinated optimization strategy allows both parameter sets to

converge stably and complementarily toward their true values.
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Third, to improve the convergence speed and optimization efficiency, a novel loss function

is designed. This function directly generates a time–frequency representation (TFR) from the

parameters under optimization, namely the complex amplitudes, and compares it with the TFR

derived from the ground-truth waveform. By circumventing both waveform reconstruction and

subsequent TFR computation, the proposed loss function reduces computational complexity and

encourages the estimated amplitudes and frequencies to more accurately capture the underlying

vocal tract characteristics.

To assess the effectiveness of the proposed method, a series of experiments are conducted on

real speech utterances. The results show that the BP-based QHM approach significantly improves

speech resynthesis quality, yielding the highest signal-to-reconstruction accuracy and the lowest

mel-cepstral distortion. These findings demonstrate the high potential of QHM-based synthesis

in speech modeling and highlight its differentiable nature, making it a promising candidate for

integration with neural network-based architectures.

3.2 Frequency Correction based on Spectrogram

First, we begin by addressing the primary limitation of QHM-based approaches, namely their rel-

atively low accuracy in frequency estimation. This limitation stems from the intrinsic structure of

the QHM algorithm, wherein instantaneous frequency is not computed directly, but rather inferred

from the estimated complex amplitudes of harmonic components. Specifically, QHM expresses a

signal as a superposition of AM–FM components, and computes the instantaneous frequency via

the phase derivatives of the complex envelope. As a consequence, any noise, error, or instability

present in the estimation of these complex envelopes will propagate into the frequency domain,

thereby degrading the reliability and precision of the estimated instantaneous frequencies. This

sensitivity becomes particularly problematic in cases involving nonstationary signals or strong

frequency modulation, which are common in natural speech.

To mitigate this issue, we propose a novel frequency refinement strategy that bypasses the com-

plex amplitude estimation step entirely. Instead of estimating frequency indirectly, we directly

correct the initial frequency estimates by leveraging the local structure of the time–frequency

representation (TFR), specifically the Short-Time Fourier Transform (STFT). The core idea is to

exploit the fact that, in the STFT domain, each harmonic component manifests as a localized

peak, and the frequency of each component can be refined by analytically locating the center of

its corresponding spectral blob. This approach is not only theoretically justified under reasonable

signal assumptions, but also practically effective in improving the accuracy of frequency estima-

tion. In the following part, we give the specific derivation process of this algorithm and prove its

effectiveness even for nonstationary signals with strongly modulated frequencies.

We use a simulated signal to demonstrate the details of the proposed refinement method. Con-
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sidering the STFT of a signal, x ∈ L2(R), it can be expressed with a phase shift eiωt as

Sx(t,ω) =
∫

R
x(u)g(u− t)e−iω(u−t)du, (3.1)

where g(·) is the moving window and g ∈ L2(R). For the deterministic part of the speech, Eq.

(3.1) can be rewritten as

Sx(t,ω) =
K

∑
k=−K

∫

R
xk(u)g(u− t)e−iω(u−t)du, (3.2)

which shows that each component can be considered a well-separated intrinsic mode-type com-

ponent if an appropriate window is chosen to prevent the main lobes of adjacent harmonics from

overlapping. Therefore, assuming that the amplitude and frequency of xk(u) are weakly modu-

lated, Eq. (3.2) can be approximated according to Parseval’s Theorem as

Sx(t,ω) =
1

2π

K

∑
k=−K

∫

R
X̂k(ξ )Ĝ(ξ −ω)eiξ tdξ

≈
K

∑
k=−K

Ak(t)
∫

R
δ (ξ −ωk)Ĝ(ξ −ω)eiξ tdξ

=
K

∑
k=−K

Ak(t)Ĝ(ωk−ω)eiωkt , (3.3)

where ωk is the angular frequency, measured in radians per second and ωk = 2π fk(t). Ĝ(·) and

X̂k(ξ ) denote the Fourier transform of the window and the k-th component, respectively, where

X̂k(ξ ) ≈ 2πAk(t)δ (ξ −ωk) is considered in the equation. This illustrates that the TFR of a har-

monic signal is composed of multiple Fourier transforms of window functions concentrated in

the trajectories ωk = 2π fk(t). Since all components are well separated, here we only use the k-th

component

Sxk(t,ω) = Ak(t)Ĝ(ωk−ω)eiωkt , (3.4)

as an example to derive the method. In this paper, the Gaussian function is chosen to represent

the window function g(t) = 1√
2πσ

e−
t2

2σ2 , whose Fourier transform is Ĝ(ω) = e−
σ2ω2

2 . Therefore,

the STFT of the k-th component gives

Sxk(t,ω) = Ak(t)Ĝ(ωk−ω)eiωkt

= Ak(t)e−
σ2(ωk−ω)2

2 eiωkt

= Ak(t)e−
σ2(ω−ωk)

2

2 +iωkt . (3.5)

Let us examine the frequency axis. The k-th component can be interpreted as a complex Gaussian

distribution. Although the shape of the Gaussian function (i.e., its width and height) varies with
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the parameter σ , its overall contour remains consistent. This observation inspires the idea that

the distance from any point on the ω-axis to the center of the Gaussian distribution can be deter-

mined, according to the specific “bell shape” of the window. Accordingly, the partial derivative

of Sxk(t,ω) with respect to ω can be computed as

∂Sxk(t,ω)

∂ω
= Ak(t)

∂

[
e−

σ2(ωk−ω)2

2

]

∂ω
eiωkt

= Ak(t)σ2(ωk−ω)e−
σ2(ω−ωk)

2

2 +iωkt .

= σ
2(ωk−ω)Sxk(t,ω) (3.6)

Defining the distance from the point to the center of the Gaussian function as ∆ωk , we have

∆ωk = ω−ωk =−
∂Sxk(t,ω

init
k )/∂ω

σ2Sxk(t,ω)
. (3.7)

This indicates that the distance from any arbitrary bin to the center of the Gaussian function is

known. Thus, assuming that the frequency detected by the pitch detector ω init
k is located within the

k-th Gaussian window lobe, accordingly, the distance from ω init
k to the center can be determined

and adding this distance to ω init
k yields the accurate frequency ω refine

k as

ω
refine
k = ω

init
k −∆ωk = ω

init
k +

∂Sxk(t,ω
init
k )/∂ω

σ2Sxk(t,ω
init
k )

. (3.8)

In this way, the frequencies can be corrected.

As we all know, speech signals are usually strongly frequency-modulated, meaning that the

frequencies of speech signal components are time-varying, even within a frame, and Eq. (3.3) is

unsatisfied. To prove the effectiveness of frequency update in Eq. (3.8) for strongly frequency-

modulated signals, we analyze a chirp signal with a fixed amplitude A:

x0(t) = Aeiϕ0(t),ϕ
(n)
0 = 0 for n≥ 3, (3.9)

where n is the derivative order. The Taylor expansion of the exponential part at time t can be

expressed as

x0(u) = Aei[ϕ0(t)+ϕ ′0(t)(u−t)+ 1
2 ϕ ′′0 (t)(u−t)2]. (3.10)
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Substituting Eq. (3.10) into Eq. (3.1), we have

Sx0(t,ω) =
∫ +∞

−∞

x0(u)g(u− t)e−iω(u−t)du

=
∫ +∞

−∞

x0(t +u)g(u)e−iωudu

=
∫ +∞

−∞

Aei[ϕ0(t)+ϕ ′0(t)u+
1
2 ϕ ′′0 (t)u

2] 1√
2πσ

e−
u2

2σ2 e−iωudu

=
A√
2πσ

eiϕ0(t)
∫ +∞

−∞

e−
1
2

[
1

σ2−iϕ ′′0 (t)
]
u2−i[ω−ϕ ′0(t)]udu

=
A√
2πσ

eiϕ0(t)
∫ +∞

−∞

e−
1
2 D(t)u2+E(t,ω)udu

=
A√
2πσ

eiϕ0(t)+
E(t,ω)2

2D(t)

∫ +∞

−∞

e−
1
2 D(t)

[
u−E(t,ω)

D(t)

]2

du

=
A√
2πσ

√
2π

D(t)
eiϕ0(t)+

E(t,ω)2

2D(t)

=
A√

1− iσ2ϕ ′′0 (t)
e

iϕ0(t)−
[ω−ϕ ′0(t)]

2

2
[

1
σ2 −iϕ ′′0 (t)

]

(3.11)

where D(t) = 1
σ2 − iϕ ′′0 (t), E(t,ω) =−i[ω−ϕ ′0(t)],

∫ +∞

−∞
e−

1
2 D(t)

[
u−E(t,ω)

D(t)

]2

du =
√

2π

D(t) is consider

[79]. Considering Ã = Aeiϕ0(t)√
1−iσ2ϕ ′′0 (t)

and σ̃2 = 1/
[

1
σ2 − iϕ ′′0 (t)

]
, Eq. (3.11) can be considered a

Gaussian function as

Sx0(t,ω) =
A√

1− iσ2ϕ ′′0 (t)
e

iϕ0(t)−
[ω−ϕ ′0(t)]

2

2
[

1
σ2 −iϕ ′′0 (t)

]

= Ãe−
σ̃2[ω−ϕ ′0(t)]

2

2 (3.12)

which is also a complex Gaussian function. Hence, the partial derivative of Sx0(t,ω) with respect

to ω can be computed as

∂Sx0(t,ω)

∂ω
= Ã

∂

[
e−

σ̃2[ω−ϕ ′0(t)]
2

2

]

∂ω

= Ãe−
σ̃2[ω−ϕ ′0(t)]

2

2 σ̃
2[ϕ ′0(t)−ω]

= Sx0(t,ω)σ̃2[ϕ ′0(t)−ω]. (3.13)

Subsequently, the distance from the point to the center of the Gaussian function (the ground truth

of frequency) can be computed by

ϕ
′
0(t)−ω =

∂ωSx0(t,ω)

σ̃2Sx0(t,ω)
. (3.14)
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Finally, the frequency of the signal can be estimated on the basis of any point by adding the

distance from that point to the center, as

ϕ
′
0(t) = ω−∆ f0 = ω +

∂ωSx0(t,ω)

σ̃2Sx0(t,ω)
, (3.15)

where ∆ f0 is the distance from the bin to the frequency of x0(u). As discussed previously, voiced

speech can be characterized as a quasi-harmonic signal, where the instantaneous frequencies of the

harmonics evolve continuously over time. This time-varying harmonic nature allows the speech

signal to be effectively approximated by a superposition of multiple chirp-like components, each

occupying distinct and well-separated frequency bands. Owing to this structure, it becomes feasi-

ble to perform a refinement process on the estimated frequencies of individual harmonic compo-

nents to improve their alignment with the underlying signal characteristics.

To demonstrate the effectiveness of the proposed frequency refinement strategy, we present a

comparison between the initial frequency estimates and their refined counterparts in Fig. 3.1.

Specifically, the black frequency trajectories shown in Fig. 2.2 are refined through the refinement

algorithm, resulting in the more accurate frequency curves depicted in Fig. 3.1. As illustrated,

each harmonic frequency is realigned such that it coincides with the peak of its corresponding

Gaussian distribution, which models the uncertainty or dispersion in the frequency estimation.

By adopting the refined frequencies as initialization for subsequent optimization, such as gra-

dient descent, it is possible to significantly enhance both the convergence speed and the final

estimation accuracy. This is because starting from values that are closer to the true solution re-

duces the number of iterations required and mitigates the risk of convergence to suboptimal local

minima. Therefore, the refinement process serves as an essential step toward more precise and

efficient harmonic parameter extraction.

To further illustrate the performance of the proposed frequency refinement method in correcting

the frequency of modulated signals (frequency-modulated), we use such a spectrogram-based

refinement method to correct the frequency in different noisy cases. The same simulated signal

in Eq. (2.34) is employed to verify the performance, which is corrupted by different levels of

noise. The results are plotted in Figs. 3.2 and 3.3. It can be easily observed that the proposed

method can effectively correct the frequencies in Fig. 3.2. Even though the frequencies of the

signal vary rapidly over time, the frequency of each component can be located at the peak of

the corresponding Gaussian distribution. Fig. 3.3 shows the performance in the extremely noisy

condition, demonstrating that the frequency of each component can be accurately relocated at

the peak of the corresponding Gaussian distribution, even when the frequency mismatch is large,

making the initial frequency located in the main lobe of the adjacent component.

This is due to a two-stage refinement strategy: first, the pitch initially detected by the pitch

detector will be corrected independently to reduce the pitch mismatch. Second, the frequencies

of individual harmonic components will be calculated by multiplying the order of the harmonic
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Figure 3.1: (a) STFT of a speech signal and the refined frequencies, and (b) sectional view at t = 0.34 sec.
In (b), the black dots represent the detected frequencies by the pitch detector, while the red dots indicate
the refined frequencies. The mismatches for each harmonic are reduced, locating the frequencies at their
corresponding peaks.

components. Then, the frequency of the individual harmonic component will be refined through

the spectrogram again. In such a way, the pitch mismatch will be preliminarily reduced to avoid

the increment of frequency mismatch of the individual frequency, as shown in Eq. (2.33). Then,

the frequency mismatch of the individual harmonic component can be easily estimated for the

correction. Besides, if the frequency is not linearly modulated but in a higher order, the proposed

spectrogram can still correct the frequency accurately with an iterative strategy, i.e., the corrected
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Figure 3.2: Frequency estimates by proposed refinement method using initial f0 whose mismatch ∈
[−10,10].

frequency can be considered as the initial frequency of the next iteration. Thus, after the iterations,

the frequency will be gradually approximated towards the peak of the corresponding Gaussian

distribution, namely the ground truth of the frequency.

It is worth noting that even in such iterative or two-stage cases, the spectrogram (Sxk)(t,ω)

and its partial derivative with respect to ω (∂ωSxk(t,ω)) only needs to be computed only once.

Therefore, the efficiency of the proposed method is higher than that of QHM methods, since

QHM methods need to correct the frequency according to the result of LS. LS is time-consuming,

implying that the iterative frequency correction of QHM methods is extremely time-consuming,

which is unsuitable to be applied in practical applications. In contrast, once the two complex

spectrogram are computed, the frequency can be iteratively corrected by Eq. (3.8) without any

extra heavy computation.

3.3 Parameter Refinement based on Backpropagation

In this section, we focus on addressing the second limitation discussed earlier, namely, the degra-

dation of resynthesis quality caused by framewise modeling. With the rapid advancement of

deep learning techniques, backpropagation (BP) has become a fundamental tool for optimizing

model parameters. BP works by computing the gradients of a loss function that quantifies the

discrepancy between the generated output and the ground truth, and then updating the parameters

accordingly. Inspired by this paradigm, we extend the notion of trainable parameters to include

the complex amplitudes and instantaneous frequencies used in signal modeling. Rather than esti-

mating these parameters independently for each frame, we jointly optimize the complex amplitude

and frequency of each harmonic component across all frames using gradient-based optimization.

To achieve this, we compute the gradients of a loss function defined on the entire waveform
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Figure 3.3: Frequency estimates by proposed refinement method using initial f0 whose mismatch ∈
[−45,45].

sequence, rather than on individual frames, and backpropagate the errors through the synthe-

sis process. This sequence-wise modeling framework allows for holistic parameter adjustment,

thereby overcoming the inherent discontinuities and inconsistencies introduced by framewise esti-

mation. However, implementing this approach necessitates addressing several key considerations,

as outlined below.

3.3.1 Differentiability of the Synthesis Process

For the gradients computed by the loss function to be effectively backpropagated, it is essential

that the synthesis process be differentiable with respect to the parameters to be optimized. Specif-

ically, the synthesized speech signal must be differentiable with respect to both the complex am-

plitude and the instantaneous frequency. In this work, we adopt the synthesis process previously

employed in QHM, which includes both deterministic and stochastic components. Notably, this

synthesis process incorporates a phase compensation algorithm that enhances robustness against

errors in parameter estimation.

Here, we focus on the differentiability of the entire synthesis process. Noting that the input

of the synthesis process is the framewise complex amplitudes and frequencies, the output is the

sequence-wise speech waveform. To explore the differentiability, we start from the speech wave-

form. Eq. (2.25) shows that the speech waveform is the sum of harmonics, showing that the

speech waveform is differential with respect to individual instantaneous amplitudes and phases.

Eq. (2.30) shows that the individual instantaneous phases is differential with respect to individual

frequencies. Subsequently, thanks to the use of cubic interpolation for frequency trajectories and

linear interpolation for amplitude evolution, the individual instantaneous amplitudes and frequen-

cies are differential with respect to their own framewise versions. Then, Eq. (2.27) indicates that
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the framewise amplitudes and phases are obtained from the complex amplitudes, proving that the

framewise amplitudes and phases are differential with respect to framewise complex amplitude.

Consequently, the entire synthesis pipeline is differentiable, which implies that the gradients of the

loss function with respect to framewise parameters, i.e., the complex amplitude al
k and frequency

f l
k , can be obtained via standard backpropagation.

3.3.2 Design of an Appropriate Loss Function

Once the differentiability of the synthesis process has been established, the next step is to define an

appropriate loss function for guiding the optimization. Departing from conventional framewise

analysis methods such as QHM, we adopt a sequence-wise loss that evaluates the discrepancy

between the generated and reference signals over the entire waveform. Specifically, we define a

waveform-domain loss function as

Lwave = fwave[x̂(t);x(t)], (3.16)

where fwave[·] denotes a suitable distance metric, and x(t) and x̂(t) represent the ground truth

and synthesized speech signals, respectively. This formulation enables the error information be-

tween adjacent frames to be jointly utilized, thereby facilitating consistent and coherent parameter

optimization across frames.

It is well known that in optimization problems, the presence of a non-convex loss function often

leads to the solution becoming trapped in local minima, thereby hindering convergence to the

global optimum. This phenomenon poses a significant challenge, as it may result in suboptimal

parameter estimation and degraded model performance. Consequently, a considerable body of

research has been dedicated to the design and formulation of loss functions exhibiting convexity

or quasi-convexity properties. Such convex loss functions are advantageous because they increase

the likelihood that iterative optimization algorithms will converge to the global minimum, thereby

enhancing the stability and reliability of the training process. In the following part, we also check

the convexity of our loss function.

Beforehand, a well-known convexity theorem should be concerned.

Theorem 1. A fundamental result in convex analysis states the following: if each function fi(x)

is convex and the corresponding weights αi are non-negative real numbers, i.e., αi ≥ 0, then their

weighted sum

f (x) = ∑
i

αi fi(x) (3.17)

is also convex. This result critically relies on both the convexity of the functions fi and the posi-

tivity of weights αi within the real domain.

In the waveform synthesis process considered here, the reconstructed waveform at time t is
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expressed as (same as Eq. (2.25))

x̂(t) = ∑
k

Ak(t)eiϕk(t), (3.18)

where Ak(t) > 0 are instantaneous amplitudes (positive real numbers), but eiϕk(t) are complex

numbers on the unit circle in the complex plane, thus not positive real values.

Because the weights Ak(t) multiply complex-valued terms eiϕk(t), the overall summation

∑
k

Ak(t)eiϕk(t) (3.19)

is a sum of complex numbers rather than a sum of non-negative real values. Therefore, the posi-

tivity condition on weights required by the convexity theorem does not hold.

As a consequence, even though each amplitude Ak(t) is positive, the function x 7→ x̂(t) is a

nonlinear mapping involving complex exponentials, which are not convex functions over the real-

valued phase parameters ϕk(t). Although fwave[·] can be selected as a convex function, it is still

hard to ensure the convexity of the loss function with respect to framewise complex amplitudes

and frequencies.

This argument demonstrates rigorously that, due to the inherent nonlinearity of the synthesis

process, the waveform loss function does not satisfy the conditions for convexity, and hence poses

challenges for optimization methods that rely on convexity assumptions, causing optimization al-

gorithms to converge to poor local minima, particularly during the early stages of training. To

mitigate this risk, it is desirable to introduce an auxiliary convex loss function that can stabilize

the optimization trajectory. Convex loss functions can guide the parameters towards globally fa-

vorable regions of the solution space, thereby accelerating convergence and enhancing robustness.

Moreover, it is crucial that the loss function ensure consistency between the spectral charac-

teristics of the synthesized and target signals. In this context, spectrogram-based loss functions

have gained widespread popularity. However, recent studies [80, 81] have demonstrated that most

conventional spectrogram-based losses used in neural speech processing are also non-convex with

respect to the model parameters. This observation has spurred a wave of research aimed at ad-

dressing the limitations of spectrogram losses. For example, [82] examines how different loss

configurations influence harmonic parameter estimation, while [83] explores the application of

optimal transport to enable more meaningful comparisons between discrete spectral distributions.

In addition to the issue of non-convexity, standard spectrogram-based losses are computation-

ally expensive, which can lead to slow convergence. To address both challenges, non-convexity

and computational inefficiency, we are motivated to propose a novel loss function that operates

directly on the model parameters, bypassing the need to generate the full waveform.

Recall from Eq. (2.1) that the absolute value of the complex amplitude at the frame center (t =

0) corresponds to the instantaneous amplitude. Meanwhile, Eq. (3.3) reveals that the peak of each
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Gaussian window in the time-frequency domain aligns with the amplitude of the corresponding

signal component at the frame center. This observation motivates us to construct a spectrogram-

like representation directly from the parameters, leading to the definition of a parameter-based

spectrogram loss:

Lspec = fspec[M̂x(tl,ω);Mx(tl,ω)], (3.20)

where fspec[·] can be either the l1 or l2 norm, Mx(tl,ω) denotes the ground-truth spectrogram

magnitude at the center of frame l. M̂x(tl,ω) is the corresponding estimated magnitude, which

can be considered as the sum of several Gaussian windows distributed at all harmonic frequencies.

It can be computed as

M̂x(tl,ω) = |Ŝx(tl,ω)|=
K

∑
k=−K

Âk(tl)Ĝ(ω− ω̂k)

=
K

∑
k=−K

Âk(tl)e−
σ2[ω−ω̂k ]

2

2 , (3.21)

where ω̂k = 2π f̂k(tl) representing the angular frequency of the k-th component at frame l.

Focusing on that Âk(tl) is always larger than 0 (Âk(tl) > 0 holds forever) and the Gaussian

window is also always larger than 0 (e−
σ2[ω−ω̂k ]

2

2 > 0 holds forever), thus, Lspec is always convex

with respect to Âk(tl). Thus, this loss can be employed to increase the convexity of the entire loss

function.

Importantly, this formulation avoids the synthesis process entirely, which significantly speeds

up the computation of gradients during backpropagation. Moreover, the expression for M̂x(tl,ω)

is convex with respect to Âk(tl), and when fspec is chosen to be a convex function, the overall loss

Lspec is also convex. This convexity plays a vital role in ensuring the stability and reliability of the

optimization process. Thus, during the optimization, we use the proposed spectrogram loss and

waveform loss as the entire loss function.

3.3.3 Alternating Backpropagation

During the training of neural models, optimization algorithms such as Adagrad [84] and Adam

[85] are commonly employed to adaptively adjust the learning rate based on the magnitude and

history of the gradients. These optimizers facilitate the simultaneous and coordinated updating of

model parameters, ideally steering them toward their respective optimal values. A fundamental

prerequisite for the effectiveness of such adaptive optimization techniques is that the parameters

involved should possess comparable distributions and similar magnitudes. When this assumption

is violated, the efficacy of the optimization process can be severely compromised.

In the context of speech parameter extraction, specifically the joint estimation of complex am-

plitudes and instantaneous frequencies, this issue becomes particularly pronounced. These two
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types of parameters differ significantly in scale and statistical distribution: the complex amplitude

typically exhibits relatively small and bounded values, whereas the frequency may vary over a

much broader range. This disparity introduces substantial difficulties in optimization.

For instance, employing a unified learning rate across both parameter types can lead to con-

flicting behaviors. A relatively low learning rate may suffice for updating the complex amplitude

toward its optimal value but results in the frequency component remaining stagnant. Conversely, a

higher learning rate may enable effective frequency adjustment but causes the complex amplitude

to overshoot, thereby failing to converge. Moreover, due to their inherently different distributions,

these parameters are more susceptible to being trapped in saddle points or poor local optima dur-

ing optimization.

Our empirical observations corroborate this analysis. Preliminary experiments reveal that the

optimization trajectories of complex amplitude and frequency often diverge, with each becoming

confined to distinct local optima. This divergence ultimately prevents the model from achieving

a globally optimal solution and underscores the necessity for tailored optimization strategies that

account for the unique characteristics of each parameter type.

3.4 BP-QHM Implementation

After introducing the ideas of the frequency refinement and the parameter refinement, in this sec-

tion, we combine the ideas mentioned above to propose a new speech modeling method named

backpropagation-based quasi-harmonic model (BP-QHM) to surmount the limitations of QHM

methods, i.e., QHM methods correct the frequency inadequately, and their framewise process

causes the degeneration of speech resynthesis. BP-QHM is designed to jointly address both fre-

quency inaccuracy and temporal discontinuity by embedding gradient-based optimization within

a differentiable synthesis pipeline. The framework leverages both deterministic signal modeling

and modern deep learning tools to achieve high-fidelity speech reconstruction.

Fig. 3.4 shows the details of forward methods (QHM methods) and our BP-QHM. The work-

flow of BP-QHM has two steps:

• First, the pitch is estimated by the pitch detector and improved by the TFR-based refiner.

This refinement ensures that the harmonic structure aligns better with the actual spectral

peaks in the signal, effectively reducing frequency deviations that would otherwise distort

the synthesized output.

• Second, the random values of complex amplitude and frequency are initialized and sub-

sequently optimized by gradient descent. The use of random initialization, followed by

principled optimization, allows BP-QHM to explore a wide parameter space and converge

towards a global optimum that preserves both the harmonic content and the phase continuity

of the speech waveform.
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Figure 3.4: Workflows of QHM, aQHM, eaQHM, and BP-QHM. The black solid lines indicate the flow of
QHM, aQHM, and eaQHM, including analysis and synthesis, whereas the red dotted lines indicate that the
gradient of the loss function is propagated backward along the synthesis flow of QHM to the parameters
being optimized, allowing for their adjustment and optimization.
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In the first step, the initial framewise pitch f̂ init
0 (tl) (l = 1, ...,L) is detected by a pitch detector,

such as YAAPT, YIN, and Harvest. This initial estimation serves as a coarse representation of

the f0 contour, and while it may capture general pitch trends, it is often insufficient for precise

harmonic reconstruction. Then, the frequency should be improved by the refiner on the basis

of Eq. (3.8). It is worth noting that ∂ωSx(t,ω) is the partial derivative of Sx(t,ω). Therefore,

a straightforward way to calculate the ∂ωSx(t,ω) in a discrete way is to use the diff. However,

in this way, the result will not align with Sx(t,ω) along the time axis. Thus, some works will

use the original Sx(t,0) to compensate for the result, inevitably increasing the computation error.

Therefore, to reduce the computation error, we establish ∂ωSx(t,ω) in a novel way, which directly

uses the modified window function gt(t) = tg(t) to conduct the STFT, i.e.,

∂Sx(t,ω)

∂ω
=
∫

R
x(t)g(u− t)

∂ [eiω(u−t)]

∂ω
du

= i
∫

R
x(t)(u− t)g(u− t)eiω(u−t)du

= i
∫

R
x(t)gt(u− t)eiω(u−t)du

= iSgt

x (t,ω). (3.22)

This approach improves numerical stability by incorporating time-weighted analysis, which is

less sensitive to minor perturbations or window truncation effects.

Immediately, f̂ init
0 (tl) is regarded as f̂ in

0 (tl) and refined by calculating

f̂ out
0 (tl) = f̂ in

0 (tl)+
iSgt

x [tl,2π f̂ in
0 (tl)]

2πσ2Sx[tl,2π f̂ in
0 (tl)]

, (3.23)

which effectively shifts the pitch value towards the center of energy in the frequency domain. This

process is analogous to performing Newton-like updates in the spectral domain to achieve local

alignment of signal energy.

As discussed before that an iterative strategy can be considered to obtain a more accurate re-

sult. Therefore, f̂ out
0 (tl) can be re-inputted into Eq. (3.23) for an iterative refinement, which acts

similarly to the multi-instantaneous frequency estimator in [86]. Empirically, two iterations are

sufficient. Using the refined pitch, we can obtain the individual frequencies as f̂ init
k (tl) = k f̂ out

0 (tl),

and perform a masking on f̂ init
k (tl) to remove the aliased frequencies1. This masking ensures that

the synthesized signal remains physically meaningful and compliant with the Nyquist theorem.

Then, the obtained individual frequencies will be corrected with the same process as that for pitch

to approximate their corresponding ridges, namely, an iterative correction for each frequency. So

far, such a two-stage and iterative frequency refinement has been completed to obtain the accurate

frequencies for each quasi-harmonic component.
1In [87], the frequencies were not refined and aliased frequency components (i.e., frequencies exceeding the Nyquist limit) were

inadvertently included. In this work, a mask is applied to ensure that only frequencies below the Nyquist limit are utilized during
correction and backpropagation optimization.
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After improving the frequency as the initial value of BP, the complex amplitude should be

initialized. The amplitude is initialized with random values sampled from a uniform distribution

or a Gaussian distribution, depending on the implementation. Subsequently, an optimizer for the

frequency OptF with the learning rate αF and another optimizer for the complex amplitude OptA
with the learning rate αA are employed to update their values iteratively. These optimizers are

selected to support adaptive learning rates, allowing for flexible adjustments as the loss landscape

evolves.

In this paper, fwave and fspec are defined as the l2 norm to allow the gradients to adaptively

self-adjust, i.e., reducing the gradients when approaching the optimum, which especially helps

the frequencies to be updated in the unvoiced part while keeping those in voiced part fixed. The

adoption of the l2 norm ensures smooth gradients, which are critical for stable convergence in

high-dimensional parameter spaces.

We suggest the use of a two-stage optimization to optimize the framewise complex amplitude

â and the individual frequency of each harmonic component f̂:

(1) Preliminary optimization (Consider â as a variable and fix f̂ for a preliminary result.)

In the early stage, we use f̂ out
k (tl) as f̂ and fix it for the preliminary optimization. Then, the

modulus of â, i.e., the real amplitude, will rapidly converge from a random initial value to

the global optimum since we adopt the proposed convex spectrogram loss function, which

also prevents the optimization from being trapped in the local optimum. This stage effec-

tively calibrates the spectral envelope and sets a solid foundation for subsequent phase and

frequency optimization.

(2) Alternate optimization.

(2.1) Consider f̂ as a variable and fix â.

Since the current frequencies and amplitudes are close to the ground truth, there is less

concern about the result remaining in other unreasonable local optima. Therefore, the

update of frequencies can be started with a low learning rate to further fit the unvoiced

speech. This gradual refinement allows the model to delicately capture high-frequency

stochastic patterns without introducing artifacts.

(2.2) Consider â as a variable and fix f̂.

To promptly adjust the complex amplitude to synchronize with the frequency updates,

an amplitude update is performed after each frequency update. This step allows the

phase of each harmonic to be fine-tuned to match the updated instantaneous frequency,

maintaining both temporal and spectral coherence.

Here, we specifically introduce the steps for optimization. We first use OptA to conduct the

preliminary optimization for Jp iterations to obtain a preliminary result of â. This stage focuses
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solely on refining the amplitude magnitudes without involving the phase or frequency variables,

which helps to stabilize the training and provide a good initialization for the subsequent alternating

optimization. Currently, we aim to optimize the modulus of complex amplitude to match the

magnitude spectrogram of the ground truth. Thus, only the proposed spectrogram loss function

Lspec(â) is employed in the optimization, avoiding getting trapped in the local optimum. The

convexity of this loss function ensures that the optimization process converges to a global solution,

which is particularly important in the early stage where the parameters are far from their true

values.

After obtaining the gradient from the loss function, accordingly, the optimizer updates the

complex amplitude as

â j+1 = â j−OptA(∇Lspec(â j);αA), (3.24)

where j means the number of iterations and ∇ denotes the gradient. The learning rate αA controls

the step size of the update, and its value must be carefully chosen to ensure convergence without

oscillation.

After the preliminary optimization, the energy of each harmonic can be determined. This en-

ergy initialization plays a crucial role in determining the relative importance of each frequency

component and provides a stable reference for later phase and frequency optimization. Next,

the phases of each component should be optimized to approximate the real waveform. Phase

alignment is essential for capturing the temporal fine structure of the signal, which greatly affects

perceptual quality. Afterward, to adjust the frequency and fine-tune the phase for matching the

waveform, especially the unvoiced speech, which is not deterministic, we start applying the wave-

form loss function. The waveform loss enables direct comparison between the synthesized and

original speech signals in the time domain, thus incorporating both phase and energy errors.

Therefore, on the basis of the improved â, the alternate optimization is conducted iteratively

for several iterations to update f̂ and â alternately. Alternating updates allow the model to itera-

tively adjust one set of parameters while holding the other fixed, which helps avoid interference

between amplitude and frequency during gradient descent. In each iteration, we first optimize the

frequency in step (2.1). As the proposed spectrogram loss is based on harmonic characteristics,

which do not align with the unvoiced part, here we use the waveform loss function Lwave(f̂) to

compute gradients of frequency and update the frequency as

f̂ j+1 = f̂ j−OptF(∇Lwave(f̂ j);αF). (3.25)

This stage is crucial for fitting the instantaneous frequency trajectory, particularly in unvoiced or

noisy segments, where phase discontinuities or stochastic variations make spectral loss unreliable.

By leveraging waveform-level loss, BP-QHM ensures time-domain accuracy without relying on

unstable or undefined harmonics.
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Immediately, in step (2.2), the gradient is computed on the basis of the updated frequency with

the combination of waveform and spectrogram loss functions, i.e., Lw+s(â) = Lspec(â)+Lwave(â).

This combination provides a comprehensive optimization objective, balancing spectral envelope

accuracy with waveform fidelity. Then, the complex amplitude is optimized similarly to Eq. (3.24)

to be updated with the latest frequency. In this way, the phase can be adaptively updated while

maintaining the spectral characteristics. This back-and-forth updating ensures that both magnitude

and phase are coherently adjusted, resulting in a speech reconstruction that is perceptually natural

and spectrally consistent.

During the iterations, we pick the result corresponding to the minimum of Lw+s as the output.

This strategy acts as a safeguard against divergence and captures the best performance achieved

throughout the entire optimization process. After iterative optimization, the complex amplitudes

and frequencies converge to the optimum, with which the speech can be perfectly resynthesized

in both voiced and unvoiced parts. The optimization process thereby achieves the joint refinement

of all parameters in a holistic manner, maximizing reconstruction accuracy and preserving signal

integrity.

Algorithm 1 provides the pseudocode for BP-QHM, encapsulating the entire process that has

been outlined thus far. It serves not only as a practical guide for implementation but also as a sum-

mary of the theoretical framework described. Each step in the algorithm corresponds to a well-

motivated mathematical operation, ensuring reproducibility and clarity for future researchers.

3.5 Experimental Evaluations

3.5.1 Experimental Design and Evaluation Aspects

To explore the performance and practical effectiveness of the proposed BP-QHM framework, we

carry out a comprehensive evaluation across multiple dimensions. Specifically, the following key

aspects are investigated:

(1) The availability and computational feasibility of the proposed spectrogram loss function.

Regarding the loss function, we conduct a direct comparison between the proposed spectro-

gram loss and the conventional magnitude-based spectrogram loss. This evaluation aims to

validate whether the newly designed loss not only accelerates convergence but also enables

the model to escape from suboptimal local minima by leveraging its convex nature. The

computational cost of calculating each loss is also recorded to demonstrate the practicality

of the proposed function when integrated into iterative gradient-based training.

(2) The time complexity and execution efficiency of BP-QHM compared with baseline QHM

variants.

In terms of time complexity, we systematically measure the actual runtime of each method,
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Algorithm 1 BP-QHM.

Step 1: Initialization and Preprocess
Input the target signal x(t), the sampling rate fs, the refinement number I f0 and I f , and the iteration
numbers J and Jp, and compute Sx(t,ω) and ∂ω Sx(t,ω);
Choose the harmonic number K, the frame-shift h, the σ of Gaussian function g, and the learning rates
αA and αF;
Step 2: Detection and Refinement of Frequency
Detect the pitch f̂ init

0 (t) and set it as f̂ in
0 ;

for i = 1 : I f0 do

f̂ out
0 (tl)← f̂ in

0 (tl)+
∂ω Sx[tl , f̂ in

0 (tl)]
2πσ2Sx[tl , f̂ in

0 (tl)]
;

end for
Get the frequencies f̂ in

k (tl) = k f̂ out
0 (tl);

for i = 1 : I f do

f̂ out
k (tl)← f̂ in

k (tl)+
∂ω Sx[tl , f̂ in

k (tl)]
2πσ2Sx[tl , f̂ in

k (tl)]
;

end for
Get the refined frequencies f̂0← f̂ out

k (tl)
Step 3: BP Optimization
Initialize complex amplitudes â0;
for j = 1 : J do

if j < Jp then
(1) Preliminary Optimization
Get ∇Lspec(â j) and update â by (3.24);

else
(2) Alternate Optimization
Get ∇Lwave(f̂ j) and update f̂ by (3.25);
Get ∇Lw+s(â j) and use it as the gradient in (3.24), then update â ;

end if
if Lw+s(â j)< Lw+s(â j−1) then

âfin← â j and f̂fin← f̂ j;
end if

end for
Output: âfin and f̂fin
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including QHM, aQHM, eaQHM, and the proposed BP-QHM, under consistent experimen-

tal conditions. This analysis reveals the trade-offs between modeling accuracy and com-

putational demand, which is crucial for deploying these methods in real-world applications

where latency and efficiency are of paramount concern.

(3) The performance of frequency estimation in terms of harmonic structure alignment.

To evaluate the accuracy of frequency estimation, we examine the corrected individual fre-

quencies produced by QHM-related methods and BP-QHM. These frequencies are visual-

ized as trajectories superimposed on time–frequency representations (e.g., spectrograms),

allowing for qualitative assessment. Additionally, we introduce a novel quantitative metric

named “harmonic deviation,” which measures the deviation of estimated harmonic frequen-

cies from their theoretical positions derived from the estimated pitch. This metric provides

a fine-grained and interpretable evaluation of harmonic alignment, particularly important in

high-fidelity speech synthesis and analysis tasks.

(4) The overall quality of reconstructed speech in both objective and subjective terms.

Finally, for reconstruction quality, we assess how well the synthesized speech reproduces

the original signal across various experimental setups. Specifically, we compare BP-QHM

with QHM and eaQHM by analyzing the perceptual and signal-level quality of reconstructed

speech under different frame-shift settings, varying numbers of harmonics (K), and differ-

ent sampling rates. These experiments are designed to test the robustness and generaliza-

tion ability of each method under both standard and challenging scenarios. The resynthesis

results are evaluated using established metrics such as signal-to-reconstruction error, mel-

cepstral distortion (MCD), and, where applicable, human listening tests, thereby providing

a holistic view of the proposed model’s capabilities.

Through these evaluations, we aim to demonstrate that BP-QHM not only addresses the short-

comings of conventional QHM methods, such as limited frequency correction and framewise

modeling errors, but also achieves superior performance in terms of both modeling fidelity and

synthesis quality.

3.5.2 Experiment Conditions

Here, we introduce the experiment conditions in detail.

Optimizer: To empirically validate the effectiveness of BP-QHM and ensure the robustness of

our evaluation across various conditions, we conduct experiments using diverse datasets and rig-

orously defined optimization settings. The Adam optimizer [85] is employed throughout the op-

timization process, owing to its adaptive learning rate adjustment and widespread applicability in

training deep neural models. As for the optimization setup, a step-decay learning rate schedule is
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adopted. Specifically, the initial learning rate for complex amplitude updates is set to αA = 0.1,

while that for frequency updates is αF = 4. To improve convergence and avoid overfitting, both

learning rates are reduced periodically: αA is decreased by a factor of 0.1 and αF by a factor of

0.5 every 100 epochs. The total number of optimization iterations is fixed at J = 500, with the

first Jp = 200 iterations dedicated to preliminary optimization of the complex amplitude using the

proposed convex spectrogram loss function.

Dataset: The speech utterances analyzed in our experiments are randomly selected from three

representative open-source corpora with varying sampling rates: the LJSpeech dataset [88] sam-

pled at 22.05 kHz, the LibriTTS corpus [89] sampled at 24 kHz, and the AISHELL corpus [90]

sampled at 44.1 kHz. From each dataset, we extract 32 utterances to ensure a fair and statistically

reliable evaluation. The results are averaged across utterances to obtain representative perfor-

mance indicators, and all average scores are accompanied by 95% confidence intervals to reflect

the variability and statistical significance of the outcomes.

Initialization and Parameter Setting: For spectrogram-based loss computation, we set the fast

Fourier transform length to Nfft = 1024, which determines the temporal resolution and window

length for time–frequency analysis. In this study, pitch values are provided by the YAAPT algo-

rithm [91], which is known for its high accuracy in voiced–unvoiced detection and pitch tracking.

The complex amplitudes, on the other hand, are randomly initialized unless otherwise specified.

However, it is widely acknowledged that initial parameter values can significantly influence the

convergence behavior and final outcome of optimization algorithms [92]. To this end, we rec-

ommend computing the short-time Fourier transform (STFT) coefficients using a truncated signal

with length Nfft = 2K as a more stable and informed initialization strategy for the complex ampli-

tude, where K denotes the number of harmonic components modeled in BP-QHM.

Measurements: To quantitatively evaluate the performance of the proposed BP-QHM framework

as well as the baseline QHM methods, we adopt a series of objective and subjective metrics that

reflect different aspects of system behavior, including reconstruction quality, frequency estimation

accuracy, intelligibility, and computational efficiency. These indicators offer a comprehensive

understanding of the strengths and limitations of each candidate method. It is worth emphasizing

that for all metrics, we follow a consistent notation where the upward arrow (↑) indicates that

higher values are preferable (i.e., better performance), whereas the downward arrow (↓) denotes

that lower values are desirable.

1) SRER [dB] ↑: The Signal-to-Reconstruction Error Ratio (SRER) serves as an objective

measure to assess the fidelity of waveform reconstruction. It quantifies how much of the

original signal energy is preserved relative to the reconstruction error. Formally, it is defined
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as

SRER(x̂,x) = 20log10
std(x)

std(x− x̂)
, (3.26)

where std(·) denotes the standard deviation, x represents the ground-truth waveform, and

x̂ denotes the reconstructed waveform. A higher SRER indicates that the reconstructed

waveform more closely matches the original signal, reflecting better reconstruction quality.

2) RMSE [Hz] ↓: The Root Mean Squared Error (RMSE) provides a classical and widely-used

metric to quantify the average magnitude of reconstruction error in the time domain. It is

computed as

RMSE(x̂,x) =

√
1
N

N

∑
n=1

(xn− x̂n)2, (3.27)

where xn and x̂n denote the n-th samples of the reference and reconstructed waveforms,

respectively, and N is the total number of samples. A lower RMSE implies smaller recon-

struction error and hence better performance.

3) STOI ↑: The Short-Time Objective Intelligibility (STOI) [93] is a perceptually-motivated

metric designed to estimate the intelligibility of speech signals. It compares the short-time

temporal envelope features of clean and degraded signals across time–frequency units using

a correlation-based method. STOI scores range between 0 and 1, with higher values indicat-

ing higher intelligibility, and are particularly useful for assessing the impact of processing

on speech understanding.

4) HD: To evaluate the accuracy of harmonic structure modeling, we introduce a novel metric

called Harmonic Deviation (HD). This metric assesses the deviation of each individual har-

monic frequency f l
k from its ideal harmonic position k f l

0 in each frame, normalized by the

f0. It is defined as

HD( f 1
0 , . . . , f L

K) =
1
L

L

∑
l=1

√√√√ 1
2K

K

∑
k=−K

(
f l
k− k f l

0

f l
0

)2

, (3.28)

where L denotes the number of frames and K is the number of harmonics. A smaller HD

value reflects a more precise alignment of harmonics with the ideal harmonic grid, which is

essential for generating perceptually natural and high-quality speech.

5) MCD ↓: The Mel-Cepstral Distortion (MCD) is a widely-used spectral distance measure

for evaluating the difference between the synthesized and reference mel-cepstral features. It
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is computed as

MCD(vgen,vref) =
10
√

2
ln10

√√√√ 24

∑
d=1

(vd
gen− vd

ref)
2, (3.29)

where vgen and vref are the mel cepstrum coefficient vectors of the generated and reference

speech signals, respectively. Lower MCD values indicate smaller spectral envelope distor-

tions and are associated with higher perceptual quality.

6) MOS ↑: The Mean Opinion Score (MOS) is a subjective metric derived from human lis-

tening tests. Participants are asked to rate the naturalness or overall quality of synthesized

speech samples on a 5-point scale, where 1 corresponds to “bad” and 5 corresponds to “ex-

cellent”. The MOS provides an intuitive and human-centric evaluation of speech quality,

complementing the objective metrics.

7) RTF ↓: The Real-Time Factor (RTF) measures the computational efficiency of the system

by comparing the processing time to the duration of the input signal. It is defined as

RTF =
Tprocessing

Tinput
, (3.30)

where Tprocessing denotes the total processing time and Tinput denotes the duration of the input

speech signal. An RTF value below 1.0 indicates that the system can operate in real time

or faster, which is important for practical deployment in speech synthesis and processing

applications.

This experimental design ensures that the performance of BP-QHM is thoroughly evaluated

under realistic and diverse acoustic conditions, while the structured optimization strategy and

principled initialization contribute to both the reproducibility and reliability of the results.

3.5.3 Rapid Convergence with Proposed Spectrogram Loss

In this section, to assess the effectiveness and efficiency of the backpropagation process (BP) in the

proposed BP-QHM framework, we first focus on evaluating the impact of different spectrogram

loss functions during the preliminary optimization phase to show the superiority of the proposed

spectrogram loss in backpropagation speed and the guidance for results not stuck in the local

optimum. In particular, we compare the conventional spectrogram loss (denoted as Lconv
spec ) with our

proposed spectrogram loss (denoted as Lprop
spec), isolating their effects by running the optimization

process exclusively based on these losses. For this comparative analysis, we conduct experiments

with a fixed number of iterations, setting the preliminary optimization length to Jp = 200 epochs.

During this process, we measure two key indicators:

• The average computation time per epoch.
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• The quality of the optimized amplitude, as measured by the mel-cepstral distortion (MCD).

Table 3.1 presents the average results obtained from these experiments. As shown, the pro-

posed spectrogram loss significantly reduces the computation time, achieving a processing speed

approximately 3.8 times faster than that of the conventional spectrogram loss. This remarkable

improvement is primarily attributed to the structural simplicity of the proposed loss, which elimi-

nates the need to explicitly reconstruct the time-domain waveform during optimization. This not

only accelerates each iteration but also reduces the computational overhead associated with signal

synthesis.

Furthermore, the MCD results demonstrate the superior optimization capability of the pro-

posed spectrogram loss. A lower MCD score suggests that the optimized complex amplitude

more accurately captures the spectral envelope of the target signal, thereby indicating more ef-

fective convergence towards the global optimum. The reduction in MCD further corroborates the

suitability of the proposed spectrogram loss in guiding the optimization to achieve high-quality

signal reconstruction.

To provide a more intuitive illustration of the convergence behavior, we visualize the optimiza-

tion trajectories of both spectrogram losses in Fig. 3.5. Specifically, we perform waveform loss

analysis by generating synthesized speech using the complex amplitudes optimized with Lconv
spec and

Lprop
spec , respectively, and then compute the waveform loss Lwave for each epoch. These waveform

losses are plotted as solid lines in the figure, while the dashed lines indicate the corresponding

spectrogram loss values during the optimization process.

As can be observed in Fig. 3.5, although both loss functions demonstrate a similar decreasing

trend in their respective spectrogram loss values, the waveform loss associated with Lprop
spec de-

creases more rapidly and converges to a lower value. This suggests that the amplitude estimates

optimized with the proposed loss are closer to the true amplitude values that best match the ref-

erence waveform. This improved convergence behavior can be attributed to the convexity of the

proposed loss function, which ensures a well-behaved gradient landscape and avoids local min-

ima during optimization. In contrast, the conventional spectrogram loss is inherently non-convex,

often leading to unstable optimization behavior and suboptimal convergence, where the amplitude

may either oscillate between different local optima or become trapped in a poor local minimum.

Overall, these results strongly support the use of the proposed spectrogram loss in the prelim-

inary optimization stage of BP-QHM, offering both faster convergence and better reconstruction

performance.

3.5.4 Study of Efficiency

In this subsection, we aim to thoroughly investigate the efficiency of the proposed BP-QHM

framework by conducting a comparative analysis of the time consumption involved in both the

analysis and synthesis stages, as compared to conventional QHM methods, including the original
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Table 3.1: Time required for BP and MCD scores. The proposed spectrogram loss consumes less time and
achieves a better MCD score.

Method Conventional Lspec Proposed Lspec

Time [ms/epoch] ↓ 2.622±0.53 0.689±0.15

MCD [dB] ↓ 2.42±0.11 1.86±0.08
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Figure 3.5: Curves of losses. Black dotted line, conventional spectrogram loss; black solid line, waveform
loss optimized with conventional spectrogram loss; red dotted line, proposed spectrogram loss; red solid
line, waveform loss optimized with proposed spectrogram loss.

QHM and the extended eaQHM. The primary objective is to quantify the computational demands

of each method under consistent experimental conditions and to provide insight into their real-

time applicability for speech modeling and synthesis.

It is important to recognize that the total time consumption is inherently influenced by various

external factors, such as the total duration of the input speech signal, the selected frame-shift in-

terval, and the specific hardware configurations employed. To ensure fairness and reproducibility,

we design a controlled experiment to serve as a reference benchmark. In this experiment, we

measure the time required by each method to analyze and synthesize a set of standardized speech

inputs under identical settings.

Specifically, the evaluation is conducted on a platform equipped with a single AMD EPYC

7542 CPU and an NVIDIA GeForce RTX 3090 GPU. A total of 32 utterances are randomly

selected from a speech dataset sampled at 22.05 kHz, and the frame-shift is fixed at 6 ms for all

methods. Since the original implementations of QHM and eaQHM methods2 do not incorporate

parallel processing capabilities and are purely CPU-based, they are executed entirely on the CPU.

In contrast, BP-QHM is evaluated in two configurations: one using the CPU only, and the other
2https://github.com/Antibas/eaQHM-analysis-and-synthesis-in-Python/tree/main
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leveraging GPU acceleration.

To enable a standardized comparison across methods and platforms, we employ the real-time

factor (RTF) as the performance metric. The RTF is defined as the ratio between the time required

to process the signal and the actual duration of the signal, thereby representing how many seconds

of computation are needed to process one second of input audio. A lower RTF value corresponds

to a more efficient implementation and indicates a stronger potential for real-time or near-real-

time deployment.

The RTF results for both the analysis and synthesis stages are summarized in Table 3.2. As

shown, for the analysis stage, BP-QHM executed on the GPU achieves the best performance, with

an average RTF of 74.79, significantly outperforming all other configurations. In contrast, eaQHM

exhibits the highest RTF of 683.03, suggesting that it is the most computationally demanding

method under the given experimental conditions. This is primarily due to the iterative nature of

eaQHM, which involves repeated estimation and refinement of both the complex amplitude and

the harmonic frequency trajectories, thereby incurring considerable computational cost.

The original QHM method, although more efficient than eaQHM, still shows a relatively high

RTF of 101.03. This is mainly because it also operates frame-by-frame without parallelism, which

limits its scalability. BP-QHM on the CPU exhibits a similar level of inefficiency to eaQHM,

highlighting the crucial role of GPU acceleration in achieving practical performance.

It is worth noting that the original QHM methods could benefit significantly from GPU-based

parallelization. Given their relatively simple and well-structured algorithmic design, it is plausible

that an optimized GPU implementation would drastically reduce their RTF, potentially enabling

them to surpass BP-QHM in terms of speed. However, such improvements are outside the scope

of this current study, which adheres to the original open-source CPU-only implementations for a

fair baseline comparison.

Turning to the synthesis stage, we observe that all methods achieve relatively low and compara-

ble RTFs, indicating that the synthesis process is generally lightweight across different methods.

Nevertheless, BP-QHM with GPU again demonstrates the best performance, achieving an RTF

of 0.07, which is marginally faster than the others. The slight advantage can be attributed to the

unified GPU memory access and the reuse of optimized amplitude parameters from the analysis

stage.

In conclusion, these findings indicate that the proposed BP-QHM framework, when accelerated

by a GPU, offers significant computational advantages in the analysis stage while maintaining

competitive performance in synthesis. This makes it a promising candidate for scalable, high-

quality speech modeling applications.
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Table 3.2: Average RTFs of QHM, eaQHM, and BP-QHM.

RTF ↓ QHM eaQHM BP-QHM-GPU BP-QHM-CPU

Analysis 101.03±5.65 683.03±24.40 74.79±1.36 679.46±2.49

Synthesis 0.22±0.53 0.27±0.49 0.07±0.12 0.25±0.22

3.5.5 Performance of Individual Frequency Estimation

In this part, we further explore the characteristics of individual frequency estimation results ob-

tained by different methods. As formulated in Eq. (1.1), the speech signal is composed of two

parts: the voiced part and the unvoiced part. Thus, the ideal behavior of speech and expected HD

patterns can be concluded:

• In voiced regions, the speech spectrum exhibits a harmonic structure: spectral peaks occur

near integer multiples of f0, and their trajectories vary smoothly over time. Accordingly, an

accurate estimator should place component frequencies close to k f0, with minimal deviation

and temporal continuity, yielding low HD in voiced frames.

• In unvoiced regions, the signal is noise-like without a stable harmonic grid. A proper esti-

mator should therefore avoid aligning frequencies to k f0; instead, any extracted components

should not systematically coincide with the harmonic lattice, resulting in high HD in un-

voiced frames.

First, for visual comparison, we compute the STFT of a speech signal and provide an en-

larged time-frequency representation, overlaid with the individual frequencies estimated by QHM,

eaQHM, and BP-QHM, as illustrated in Fig. 3.6. For consistency and fairness, all frequency esti-

mation results are obtained using the proposed spectrogram loss as the optimization criterion.

From Fig. 3.6, we can observe that while QHM performs certain frequency adjustments dur-

ing the optimization, the magnitude of these modifications remains relatively limited and often

imperceptible. In particular, even in non-harmonic or unvoiced sections, the individual frequen-

cies estimated by QHM still tend to align with the expected harmonic structure. This behavior

suggests a tendency of QHM to less correct the frequencies, thereby limiting its adaptability to

non-harmonic components in speech, such as those present in unvoiced segments or transient

sounds.

In contrast, the individual frequency estimates produced by eaQHM appear to exhibit a higher

degree of stochasticity, especially in unvoiced segments. While this randomness allows the

method to better capture the inherent variability and noise-like nature of unvoiced speech, it comes

at the cost of reduced stability in the voiced segments. In these segments, particularly at higher

frequencies, the estimated individual frequencies deviate significantly from their corresponding
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harmonic values. This instability arises due to an accumulation of frequency mismatches in the

estimation of f0, which is further amplified across higher-order harmonics. Consequently, the ini-

tial frequency of a given harmonic may inadvertently approach the true frequency of an adjacent

harmonic. When the least-squares estimation step is subsequently applied, it tends to refine the es-

timated frequency toward this adjacent harmonic, thus introducing a systematic error. This results

in excessive frequency updates and mismatch amplification, particularly in repeated estimation

scenarios.

In comparison, BP-QHM demonstrates a more robust and adaptive behavior across different

regions of the speech signal. Specifically, it accurately preserves the harmonic structure in voiced

segments while exhibiting stochasticity in unvoiced segments, enabling it to adaptively match

the spectral characteristics of both types of speech components. This is largely attributable to

the frequency refinement strategy employed by BP-QHM, which enables individual frequencies

to approximate their true values more accurately in voiced segments. During the backpropaga-

tion process, the gradient magnitudes of the frequency components differ between voiced and

unvoiced segments, being relatively smaller in voiced segments and larger in unvoiced ones. This

selective gradient behavior allows BP-QHM to focus frequency updates on non-harmonic seg-

ments while stabilizing the harmonic structure in voiced parts, thereby achieving a balanced and

adaptive estimation across the signal.

Second, to provide a quantitative measure of the harmonic integrity maintained by each method,

we define a new metric, termed “harmonic deviation” (HD), to characterize the deviation of in-

dividual frequencies from ideal harmonic structures, which is formulated in Eq. (3.28). The HD

values computed for voiced and unvoiced segments across QHM, eaQHM, and BP-QHM are pre-

sented in Table 3.3. As shown in the table, QHM achieves the smallest HD values in both voiced

and unvoiced segments, indicating a strict preservation of harmonic structure. However, this strict-

ness may be counterproductive in non-harmonic segments, where a more flexible representation

could be desirable. On the other hand, eaQHM exhibits the largest HD values, especially in voiced

segments, suggesting that its frequency estimation process disrupts the harmonic structure due to

instability and mismatch propagation.

In contrast, BP-QHM exhibits an intermediate result. In voiced parts, BP-QHM yields a much

lower HD value than that of eaQHM, only slightly higher than QHM. In unvoiced parts, BP-QHM

obtains a much higher HD value than that of QHM. This indicates that BP-QHM is capable of

maintaining sufficient harmonic consistency in voiced segments while also permitting flexibility

in unvoiced segments. Such a balance aligns well with the characteristics of natural speech and

demonstrates the effectiveness of BP-QHM in approximating the underlying generative structure

of the signal. This also indicates that BP-QHM is more accurate in frequency estimation compared

to QHM and eaQHM. In essence, BP-QHM achieves a more realistic and adaptive modeling of

speech frequencies by enabling localized and selective refinement, which is critical for high-
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Table 3.3: HDs of speech signals resynthesized by QHM, eaQHM, and BP-QHM.

Method QHM eaQHM BP-QHM

Voiced 3.42×10−5 15.29 7.37×10−2

Unvoiced 3.59×10−4 9.79 1.54×10−1
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Figure 3.6: The STFT of a speech signal and individual frequencies estimated by various methods. Pink
lines: estimated frequencies by QHM, black lines: estimated frequencies by eaQHM, red lines: estimated
frequencies by BP-QHM.

quality resynthesis and downstream processing tasks.

3.5.6 Evaluation of Speech Resynthesis

In this subsection, we evaluate the resynthesis capability of different methods by systematically

comparing the reconstructed speech with the ground truth reference in terms of signal fidelity, in-

telligibility, and perceived quality. Specifically, we adopt several objective and subjective metrics

to comprehensively assess the reconstruction performance, signal similarity, and intelligibility,

such as RMSE (Eq. (3.27)), SRER (Eq. (3.26)), STOI, MCD (Eq. (3.29)), and MOS.

Before comparing BP-QHM with other QHM-based approaches, we first perform an internal

ablation study to investigate how two key design choices, namely the type of spectrogram loss and
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Table 3.4: Average RMSE, SRER, STOI, and MCD scores of BP-QHM in different conditions.

BP-QHM with CSL-ABP PSL-nonABP PSL-ABP

RMSE ↓ 0.025±0.002 0.027±0.002 0.017±0.001

SRER [dB] ↑ 12.3±0.91 11.3±0.70 14.9±0.71

STOI ↑ 0.87±0.02 0.85±0.01 0.89±0.01

MCD [dB] ↓ 2.63±0.10 2.55±0.11 2.04±0.09

the use of alternating backpropagation (ABP), affect the performance of BP-QHM. Specifically,

we examine three configurations:

1) CSL-ABP: Using the conventional spectrogram loss with alternating backpropagation.

2) PSL-nonABP: Using the proposed spectrogram loss without alternating backpropagation.

3) PSL-ABP: Using the proposed spectrogram loss with alternating backpropagation.

In this experiment, 32 utterances randomly selected from the LJSpeech corpus (22.05 kHz) are

analyzed under identical conditions: 8 ms frame-shift and 128 harmonics. Table 3.4 presents the

averaged scores of RMSE, SRER, STOI, and mel-cepstral distortion (MCD) for the three settings.

The results clearly demonstrate that the PSL-ABP configuration significantly outperforms the

other settings across all evaluation metrics. Specifically, the conventional spectrogram loss (CSL)

leads to suboptimal performance due to its inherent non-convexity, which can cause the optimiza-

tion process to get stuck in local minima. In contrast, the proposed spectrogram loss (PSL), by

bypassing the waveform synthesis during loss computation, improves the convexity of the objec-

tive landscape and thereby facilitates faster and more reliable convergence to a global optimum.

Furthermore, the inferior performance of PSL-nonABP confirms the necessity of alternating back-

propagation, which enables the method to adaptively transition between harmonic and stochastic

components in unvoiced segments. Based on these findings, the PSL-ABP configuration is se-

lected to represent BP-QHM in subsequent comparisons.

We now compare the proposed BP-QHM method with QHM and eaQHM under identical ex-

perimental conditions. Table 3.5 presents the average performance metrics obtained from 32

LJSpeech utterances. The results indicate that although QHM performs well in SRER and MCD,

eaQHM achieves better scores due to its iterative and nonlinear estimation of both frequency

and amplitude components. Nevertheless, BP-QHM surpasses both baselines across all metrics.

Specifically, the global optimization framework of BP-QHM enables it to consider the entire

speech sequence holistically rather than modeling it frame by frame. This comprehensive opti-

mization allows BP-QHM to iteratively refine frequency estimates toward their true values and

simultaneously adjust amplitude and phase, resulting in improved parameter accuracy and signal
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Table 3.5: Average RMSE, SRER, STOI, and MCD scores. The MOS of the ground truth samples was
4.25±0.02.

Method QHM eaQHM BP-QHM

RMSE ↓ 0.029±0.002 0.022±0.002 0.017±0.001

SRER [dB] ↑ 10.6±0.54 12.9±0.71 14.9±0.71

STOI ↑ 0.84±0.01 0.88±0.01 0.89±0.01

MCD [dB] ↓ 2.30±0.07 2.18±0.08 2.04±0.09

MOS ↑ 3.78±0.03 3.83±0.03 4.05±0.02
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Figure 3.7: The waveforms of resynthesized speech signals. Black: reference, blue: QHM (left), brown:
eaQHM (middle), red: BP-QHM (right).

reconstruction. For instance, BP-QHM achieves a notable SRER of 14.9 dB and an MCD of

2.04 dB, indicating superior spectral and waveform fidelity.

In addition to numerical metrics, the qualitative performance of each method is illustrated in

Fig. 3.7, where waveforms reconstructed by QHM, eaQHM, and BP-QHM are displayed along-

side the original reference waveform. It is evident from the figure that the waveform generated by

BP-QHM is most similar to the reference, both in terms of shape and dynamics. Furthermore, the

SRER values for the displayed example are also provided in the figure, confirming that BP-QHM

achieves the highest reconstruction fidelity.

To comprehensively investigate the performance of the proposed BP-QHM method under dif-

ferent analysis conditions, we conduct a series of experiments under three distinct scenarios: vary-

ing frame-shift lengths, different numbers of harmonic components, and multiple sampling rates.

These experiments aim to evaluate the robustness, generalization, and adaptability of the methods

under various practical configurations.
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Figure 3.8: Curves of SRER scores obtained by various methods as a function of time shift.

Effect of Frame-Shift Lengths

We first examine how the analysis frame-shift affects the performance of each method. Specif-

ically, we evaluate the models under frame-shift durations of 2 ms, 4 ms, 6 ms, and 8 ms. The

average SRER, MCD, and MOS scores are computed over 32 test utterances and shown in Figs.

3.8, 3.9, and 3.10, respectively.

As illustrated in the figures, both QHM and eaQHM suffer significant performance degradation

as the frame-shift increases. This is primarily attributed to their inherent framewise estimation

process, which fails to capture temporal dependencies across frames. In contrast, BP-QHM main-

tains superior performance, with more gradual deterioration as the frame-shift increases. Even

at the largest frame-shift (8 ms), BP-QHM achieves an SRER of 14.9 dB and an MCD of 1.64,

which remain superior to those of the other methods. Moreover, BP-QHM consistently achieves

the highest MOS values, further confirming its ability to reconstruct perceptually natural speech.

These findings suggest that the sequence-level modeling adopted by BP-QHM enables it to

retain high-quality speech resynthesis while reducing the number of frames required for analysis.

This not only enhances computational efficiency but also improves modeling robustness.

Effect of the Number of Harmonics

Next, we investigate how the number of harmonic components (K) used during analysis affects

performance. The experiments are conducted on 22.05 kHz speech data using K = 32, 64, and

128 harmonics. The average SRER, STOI, MCD, and MOS scores are summarized in Table 3.6.

Overall, BP-QHM consistently outperforms the other methods when sufficient harmonic com-

ponents are available (i.e., K = 128 and K = 64). However, as K decreases, particularly to K = 32,

BP-QHM’s performance notably declines in both SRER and MOS. In contrast, QHM and eaQHM

exhibit only minor performance drops. This is likely because the LS-based estimation in QHM
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Figure 3.9: Curves of MCD scores obtained by various methods as a function of time shift.
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Figure 3.10: Curves of MOS values obtained by various methods as a function of time shift. The MOS
value of ground truth is 4.25±0.02.

and eaQHM can match the waveform reasonably well even with fewer harmonic components, due

to their flexible local fitting.

BP-QHM, however, relies on modeling the full signal spectrum through harmonic decompo-

sition and requires a sufficient number of harmonics to accurately reconstruct both spectral and

temporal characteristics. The results highlight the importance of selecting an appropriate K, par-

ticularly for higher-pitched signals such as those from female speakers, to ensure high synthesis

quality.

Effect of Sampling Rate

Finally, we assess how the sampling rate ( fs) of the input speech affects the performance of the

different methods. Using a fixed frame-shift of 6 ms and K = 128 harmonics, we evaluate speech
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Table 3.6: Average SRER, STOI, and MCD scores at various K values. The MOS of the ground truth
samples was 4.33±0.02.

Harmonic number Method SRER [dB] ↑ STOI ↑ MCD [dB] ↓ MOS ↑

K = 128

QHM 12.6±0.53 0.88±0.01 1.98±0.06 4.12±0.03

eaQHM 15.3±0.75 0.92±0.01 1.41±0.07 4.05±0.02

BP-QHM 17.9±0.86 0.93±0.01 1.40±0.08 4.18±0.02

K = 64

QHM 12.4±0.55 0.88±0.01 2.03±0.06 4.11±0.02

eaQHM 14.8±1.03 0.92±0.01 1.52±0.07 4.18±0.02

BP-QHM 14.8±0.96 0.93±0.01 1.49±0.08 4.23±0.02

K = 32

QHM 11.3±0.69 0.88±0.01 2.37±0.10 4.06±0.02

eaQHM 12.2±0.86 0.92±0.01 2.00±0.10 4.11±0.03

BP-QHM 11.0±1.06 0.92±0.01 1.94±0.10 4.09±0.02

signals sampled at 22.05 kHz, 24 kHz, and 44.1 kHz. The results are summarized in Table 3.7.

As shown in the table, BP-QHM consistently yields higher SRER and lower MCD across all

sampling rates, confirming its robustness. Notably, BP-QHM significantly benefits from increased

sampling rate in terms of frequency resolution, allowing for better modeling of high-frequency

components. This is evident from the performance at 24 kHz, where BP-QHM achieves its best

overall results.

However, at 44.1 kHz, the advantage of BP-QHM becomes less pronounced. This is likely due

to the predominance of male speech in the test samples, where f0 values are relatively low, and

most energy is concentrated in the lower-frequency band. Under such conditions, the higher sam-

pling rate provides little additional benefit, since fewer high harmonics are active. Nonetheless,

BP-QHM still remains competitive or superior to QHM and eaQHM.

In summary, across all experimental conditions, including varying frame-shifts, harmonic num-

bers, and sampling rates, the proposed BP-QHM consistently demonstrates robust and high-

quality performance. These results underscore its flexibility and adaptability to a wide range

of speech signal conditions.

3.6 Summary

In this chapter, we demonstrated that conventional QHM methods struggle to effectively extract

the amplitudes and frequencies of individual signal components, often resulting in unsatisfactory

reconstruction of the speech waveform. To address these limitations, we proposed a frequency
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Table 3.7: Average SRER, STOI, and MCD scores at various fs values. The MOS values of ground truth
with 22.05 kHz, 24 kHz, and 44.1 kHz were 4.25±0.01, 3.90±0.03, and 3.67±0.03, respectively.

Sampling rate Method SRER [dB] ↑ STOI ↑ MCD [dB] ↓ MOS ↑

fs = 22.05 kHz

QHM 12.6±0.53 0.88±0.01 1.98±0.06 4.08±0.02

eaQHM 15.3±0.75 0.92±0.01 1.41±0.07 4.14±0.03

BP-QHM 17.9±0.86 0.93±0.01 1.40±0.08 4.21±0.02

fs = 24 kHz

QHM 17.0±0.66 0.93±0.01 1.23±0.08 3.78±0.03

eaQHM 21.6±1.03 0.96±0.01 0.54±0.08 3.80±0.03

BP-QHM 26.9±1.12 0.98±0.01 0.38±0.09 3.88±0.04

fs = 44.1 kHz

QHM 16.9±0.27 0.92±0.01 1.01±0.03 3.56±0.02

eaQHM 20.5±0.31 0.95±0.01 0.73±0.04 3.65±0.02

BP-QHM 21.2±0.26 0.95±0.01 0.71±0.03 3.60±0.02

refinement strategy based on the time–frequency representation (TFR). This approach aims to re-

fine the initially estimated f0 obtained via pitch detection and subsequently enhance the accuracy

of the associated harmonic frequencies. When the initial f0 estimation deviates moderately from

the ground truth, the proposed method is capable of achieving precise frequency estimation, even

for signals with rapidly varying frequency trajectories.

Furthermore, we reformulated the QHM framework by discarding the conventional framewise

analysis and instead performing parameter estimation over the entire speech utterance. Specif-

ically, we adopted a gradient descent approach to jointly solve for the complex amplitudes and

frequencies of all components, utilizing gradients propagated from the original waveform. To

promote faster and more accurate convergence to the optimal parameter values, we introduced a

novel spectrogram-based loss function. This loss function guides the optimization by aligning the

estimated parameters with the spectral characteristics of the target speech signal, thereby enabling

nearly perfect waveform reconstruction.

Despite its effectiveness, the proposed BP-QHM framework typically requires a large number

of iterations to converge, making it computationally intensive and less suitable for real-time ap-

plications. Nonetheless, through extensive experiments on various speech datasets, the proposed

method has been validated to achieve superior accuracy in both frequency and complex ampli-

tude estimation, resulting in significantly improved waveform reconstruction. These promising

results not only indicate the potential of BP-QHM for downstream applications in speech analy-

sis, transformation, and synthesis, but also demonstrate that backpropagation can be effectively

integrated into the QHM framework. This finding further suggests the feasibility of combining
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neural network models with QHM structure, which lays the foundation for achieving the ideal

speech modeling in the next chapter, i.e., the vocoder that satisfies high-speed, high-quality, and

high-controllability extraction and synthesis.
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Chapter 4

Neural Quasi-Harmonic Modeling

4.1 Introduction

The BP-QHM framework effectively optimizes the quasi-harmonic parameters via backpropaga-

tion, enabling high-quality speech resynthesis. This success suggests that the synthesis mecha-

nism underlying QHM methods holds great potential for integration with neural networks. With

careful architectural design, it becomes possible to harness the strengths of both QHM methods

and neural networks, thereby facilitating the development of more advanced neural vocoders and

contributing to practical applications in human-centered speech processing.

Building on this insight, this chapter introduces a novel neural vocoder framework that incor-

porates the QHM structure into neural networks. Two neural vocoders are proposed under this

framework to further improve speech synthesis performance. This integration addresses several

limitations associated with conventional and neural vocoders. Specifically, conventional vocoders

often suffer from insufficient parameter estimation accuracy and limited robustness, while neural

vocoders tend to operate as black-box models, lacking the ability to extract interpretable param-

eters or to provide controllable features, such as explicit pitch manipulation. The proposed ap-

proach aims to overcome these challenges by combining interpretability and structure-awareness

with the modeling power of neural networks.

To integrate the interpretability and controllability of CSP with the robustness and high-fidelity

generation capabilities of deep neural networks, we propose a novel vocoder framework that com-

bines the QHM with DNN-based modeling. Specifically, the proposed framework simplifies the

original QHM synthesis process by introducing a phase compensation mechanism to replace the

conventional instantaneous phase computation. This simplification significantly accelerates the

synthesis process while maintaining the frequency correction mechanism inherent in QHM. The

DNN is employed to estimate the necessary quasi-harmonic parameters, including complex am-

plitudes and individual frequencies, enabling fast and high-quality speech synthesis that retains

interpretable and controllable acoustic structures.

Second, to further enhance the modeling capability of the proposed framework, particularly

89



in representing the spectral resonance characteristics of speech, we incorporate an autoregressive

moving average (ARMA) model into the architecture, resulting in the QHM-GAN vocoder. In this

design, the ARMA parameters are directly predicted by the DNN, allowing each quasi-harmonic

component to acquire amplitude and phase delay characteristics from the frequency response of

the estimated ARMA filter. This facilitates a more accurate and compact representation of the

vocal tract response, improving both synthesis quality and the flexibility of speech modification.

In this chapter, we evaluate the proposed methods by comparing them with QHM, the canonical

baseline of conventional vocoders, as well as several neural vocoders, rather than BP-QHM. This

choice is motivated by several considerations:

• First, QHM is the origin of the entire QHM family and a widely recognized conventional

vocoder in the literature. Since our work aims to integrate QHM with neural networks, it is

natural and most reasonable to compare with QHM rather than BP-QHM.

• Second, while BP-QHM achieves accurate parameter estimation through waveform-level

optimization, it relies on iterative gradient descent, resulting in substantial computational

cost and making it less suitable for large-scale or real-time evaluation. As shown in Table

3.2, the RTFs of BP-QHM and eaQHM are much higher than that of QHM, which makes

large-scale experimental evaluation impractical.

• Third, the success of BP-QHM has already demonstrated that integrating QHM with neural

networks is feasible and effective, which serves as the cornerstone for subsequent integra-

tion. Therefore, there is no need for further comparison with BP-QHM in this Chapter.

To comprehensively evaluate the effectiveness of the proposed method, a series of experiments

are conducted using real speech utterances from publicly available corpora. The experimental

results demonstrate that our framework successfully leverages the complementary strengths of

QHM, ARMA filtering, and deep neural networks. Specifically, the integration of these com-

ponents enables the proposed method to achieve significant improvements over conventional

vocoders and state-of-the-art neural vocoders in multiple aspects, including waveform genera-

tion speed, synthesis quality, and modification flexibility. These advantages affirm the practicality

and generalizability of the proposed method in diverse speech processing scenarios such as high-

fidelity synthesis, pitch modification, and prosody control.

4.2 CSP-DNN Hybrid Vocoder

To simultaneously overcome the limitations of conventional vocoders and neural vocoders, we

target the design of a vocoder capable of efficiently and accurately compressing speech signals

into sparse representations during encoding. This is particularly important for high-sampling-rate

signals, which pose challenges due to their large data volumes. During decoding, the vocoder is

expected to rapidly and reliably reconstruct high-quality speech waveforms.
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Figure 4.1: Structure of QHM-GAN generator, which takes mel-spectrogram as inputs and outputs sparse
framewise amplitude and phase compensation. The framewise amplitude and phase compensation will be
used to generate the speech waveform along with the frequency.

Motivated by the capability of QHM methods to sparsely represent both voiced and unvoiced

speech, support efficient synthesis, and offer precise control over the f0, we incorporate these ad-

vantages into a robust deep learning framework. Specifically, we propose a novel vocoder archi-

tecture named QHM-GAN, which integrates CSP with a generative adversarial network (GAN)

structure. By leveraging the inference power of deep neural networks and the interpretability and

controllability of QHM-based representations, QHM-GAN enables accurate and flexible speech

generation.

In contrast to conventional mel-spectrogram-to-waveform paradigms, QHM-GAN adopts a

mel-spectrogram-to-parameter approach, where the generator predicts quasi-harmonic parame-

ters from input mel-spectrograms. These parameters are then used for efficient waveform re-

construction and enable explicit speech modification capabilities, such as f0 extrapolation. The

architecture of the generator is illustrated in Fig. 4.1. From Fig. 4.1, it is obvious that the pro-

posed QHM-GAN framework mainly consists of two components: a DNN module and a CSP

module.

The DNN module takes the mel-spectrogram as input and predicts sparse quasi-harmonic pa-

rameters, specifically the framewise amplitude and phase compensation for each harmonic com-

ponent. These parameters are compact and interpretable, allowing for efficient representation and

manipulation of speech signals.

The CSP module is responsible for decoding, where the predicted quasi-harmonic parameters

are utilized to synthesize the time-domain speech waveform. This module inherits the benefits of

QHM-based synthesis, enabling high-quality reconstruction and precise control over fundamental

frequency and harmonic structure.

The following subsections describe the DNN and CSP modules in detail.

4.2.1 Synthesis Process Simplification

In the synthesis process, we are inspired to integrate the QHM structure, namely, that the speech

waveform is the sum of several quasi-harmonic sinewaves, with neural networks. In this manner,
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the speech waveform is generated from framewise parameters of quasi-harmonics, including pitch

( f0), amplitude, and phase, which analytically describe the structure of the speech waveform. A

straightforward approach is to directly employ the synthesis process of conventional QHM meth-

ods. However, such a process is computationally complex and may degrade both the generation

efficiency and backpropagation performance.

To address this, we propose a novel synthesis approach by introducing new definitions that

simplify the original QHM synthesis while retaining its advantageous properties.

First, we briefly review the synthesis process of QHM methods. Once the instantaneous ampli-

tude and phase are obtained, the speech waveform can be reconstructed by

x̂(t) =
K

∑
k=−K

Âk(t)eiϕ̂k(t), (4.1)

where ˆ(·) denotes the estimated value of each variable. Here, x̂(t) is the generated speech wave-

form, and Âk(t) and ϕ̂k(t) are the instantaneous amplitude and phase of the k-th component,

respectively. The instantaneous phase is typically computed according to Eq. (2.30). However,

this relies on the assumption that the error between ϕ̃k(tl+1) and the unwrapped ϕ̂k(tl+1) is suf-

ficiently small. In practice, the frequencies estimated by pitch detectors often deviate from the

ground truth, and such deviations can result in significant phase errors. Furthermore, unvoiced

speech segments are inherently non-harmonic, and forcing them into a harmonic structure results

in inevitable mismatches.

Given these issues, it becomes essential to introduce a phase compensation mechanism, akin

to that in QHM methods, while simplifying the synthesis process and maintaining the frequency

correction capability. To this end, we are inspired by the fact that the phase is the integral of the

instantaneous frequency, and frequency mismatches can thus be interpreted as phase errors. We

therefore define a novel concept of phase compensation to represent this mismatch.

Definition 1. Phase compensation. Within the l-th frame, for the k-th component, let the esti-

mated instantaneous frequency be f̂k(t) and the phase compensation be defined as ∆ϕ l
k. Then, the

phase at the frame center tl is calculated as

ϕ̂k(tl) = ϕ̂k(tl−1)+
∫ tl

tl−1

2π f̂k(u)du+∆ϕ
l
k, (4.2)

where ∆ϕ l
k accounts for the discrepancy between the estimated phase (derived from the estimated

frequency) and the true phase.

To provide a visual explanation of phase compensation, Fig. 4.2 illustrates its definition. As-

suming that the estimated frequency at t = tl is accurate, i.e., f̂k(tl) = fk(tl), an inaccurate fre-

quency estimate at t = tl+1, denoted by f̂k(tl+1), leads to an erroneous phase ϕ̃k(tl+1). This

deviation introduces a phase error relative to the true phase, which is represented by ∆ϕ l
k in Fig.

4.2.
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Figure 4.2: Illustration of phase compensation.

With this definition, we enable the DNN to estimate ∆ϕ l
k for each component at each frame

center. Once the instantaneous frequency is computed via f̂k(t) = k f̂0(t), the phase at tl can be

corrected by

ϕ̂k(tl) =
∫ tl

0
2π f̂k(u)du+

l

∑
i=0

∆ϕ
i
k. (4.3)

To facilitate implementation, the integral in Eq. (4.3) is approximated using a trapezoidal rule,

averaging the adjacent framewise frequencies:

∫ tl

0
2π f̂k(u)du≈ π

l

∑
i=1

[
f̂ i−1
k + f̂ i

k
]
(ti− ti−1), (4.4)

where f̂ l
k is the estimated frequency of the k-th component at frame l.

Subsequently, the instantaneous phase is obtained via cubic interpolation across frame centers,

and the amplitude is interpolated linearly. This combination allows accurate waveform synthesis.

By introducing phase compensation, the generator acquires the capability to adaptively adjust

frequencies, akin to QHM methods. As a result, the synthesized speech waveform aligns more

closely with the target speech, improving the quality of both voiced and unvoiced segments.

4.2.2 Neural Structure for Acoustic Feature Estimation

The DNN component aims to estimate framewise amplitude and phase compensation from the

mel-spectrogram for subsequent resynthesis. Given that speech is a temporal sequence, temporal

DNNs, such as RNNs, LSTMs, or CNNs, are preferred for their ability to model both past and

future contexts. As QHM-GAN requires harmonic parameters conditioned on the input f0, the

generator receives both the mel-spectrogram and f0. To capture rich linguistic and speaker infor-

mation, multi-receptive field (MRF) modules are employed as the main network structure. Each
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Figure 4.3: Structure of the DNN part of QHM-GAN generator, which employs several MRF blocks to
estimate the output. kn and dn are the kernel size and dilation of the corresponding convolution layer,
respectively, while Tanh denotes the hyperbolic tangent function. If unlabeled, dn = 1 by default. Note that
the configurations of all MRFs in the generator are the same.

MRF module comprises three 1D convolution layers with kernel sizes of 3, 7, and 11, and dilation

rates of 1, 3, and 5. Additionally, CNNs process f0 to extract harmonic features that facilitate

pitch control. Since both the generator input and output are framewise, standard CNN layers con-

nect adjacent MRF blocks. Leaky ReLU is used as the activation function throughout. Details of

the DNN component are illustrated in Fig. 4.3.

We now describe how the mel-spectrogram and f0 are input to and processed by the network.

The mel-spectrogram first passes through a standard CNN layer, followed by N sequential MRF

modules (typically N = 4) to extract hidden features.

To incorporate f0 into the network in a spectrogram-like form, a pseudo-STFT is generated by

setting all amplitudes to 1 and placing Gaussian peaks at the harmonic frequencies:

Sx(tl,ω) =
K

∑
k=−K

e−
σ2[ω−2π f̂k(tl )]

2

2 , (4.5)

where σ is the standard deviation of the Gaussian window. This approach is motivated by the

observation that when the frequency and amplitude vary slowly within a frame, the STFT can be

approximated as a sum of window functions centered at the harmonic frequencies.

The pseudo-STFT is processed through a series of CNN layers (F-CNNs). After each F-CNN,

its output is concatenated with the corresponding MRF module output and passed to the next

F-CNN, enabling effective integration of frequency information with linguistic and contextual

features. Following several F-CNN layers, the final output is element-wise multiplied with the

hidden features from the last MRF module to emphasize harmonically relevant information.

The fused representation is subsequently fed into two separate standard CNN branches to pro-

duce phase compensation and amplitude values. As phase compensation inherently falls within

[−π,π], a hyperbolic tangent function is applied to constrain the output:

∆ϕ
l
k = π · tanh(·). (4.6)
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The generated framewise amplitude is linearly interpolated to obtain the instantaneous ampli-

tude, and the generated phase compensation is used to compute the framewise phase via Eq. (4.3),

which is then cubically interpolated to obtain the instantaneous phase.

4.2.3 QHM-GAN

By integrating the two designs mentioned above, the generator of QHM-GAN is established

by combining the advantages of conventional signal processing and neural networks. In such

a case, QHM-GAN can robustly and efficiently estimate the framewise acoustic features of quasi-

harmonics, with which the speech waveform can be quickly and flexibly generated. In the follow-

ing parts, we introduce the QHM-GAN in detail.

Generator Architecture: The generator architecture of QHM consists of a neural estimator and a

QHM-based synthesis module, as shown in Fig. 4.1. Neural estimator absorbs the mel-spectrogram

and f0 and estimates the framewise amplitudes and phase compensations of individual quasi-

harmonics. Then, the QHM-based synthesis module utilizes the framewise phase compensations

and frequencies to generate the instantaneous phases of individual quasi-harmonics. With the in-

stantaneous amplitudes linearly interpolated from the framewise amplitudes, the speech can be

synthesized by summing the sinewaves of individual quasi-harmonics using Eq. (4.1). The com-

plete pseudocode of the speech synthesis process in QHM-GAN is detailed in Algorithm 2.

The differentiability of the entire framework allows the gradients from the loss function to

be backpropagated through the synthesis module. Importantly, the introduction of phase com-

pensation enables the model to correct the phase at each frame center, effectively adjusting the

frequency of each sparse component.

Algorithm 2 Speech synthesis based on QHM-GAN.

Step 1: Preprocessing and Setting
Extract the f̂k and mel-spectrogram from speech x(t) and compute Sx(t,ω); set sampling rate fs, harmonic
number K, and frame-shift; obtain Âk(tl) and ∆ϕ l

k from DNN;
Step 2: Instantaneous amplitude and phase
Compute raw rotation angle by Eq. (4.4);
Compute unwrapped framewise phase ϕ̂k(tl) by Eq. (4.3);
Cubically interpolate ϕ̂k(tl) into ϕ̂k(t);
Linearly interpolate Âk(tl) into Âk(t);
Step 3: Generation
x̂(t)← ∑

K
k=−K Âk(t)eiϕ̂k(t);

Output: x̂(t)

Discriminator Design: The discriminator of QHM-GAN follows the general paradigm of Vocos.

Since the human auditory system is more sensitive to frequency components than to time-domain

waveform shapes, we adopt a spectrogram-based discriminator, as proposed in [6], to guide the
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learning process. This discriminator operates on multiple spectrogram resolutions and is designed

to distinguish between the generated and target speech in the frequency domain.

The spectrogram-based discriminator effectively serves as a surrogate for the human auditory

perception system, focusing on discrepancies in the spectral structure rather than the raw wave-

form. By evaluating the spectrogram at different resolutions, the discriminator captures both

coarse and fine-grained spectral patterns. This encourages the generator to produce speech with

smoother and more natural frequency transitions, thereby improving the perceptual quality of the

synthesized waveform.

High-speed Generation of QHM-GAN: Because QHM-GAN does not require upsampling, it

avoids the computational cost associated with transposed convolutions. Moreover, the generator

produces outputs at the same temporal resolution as the input mel-spectrogram, so convolutional

kernels are not applied to enlarged feature maps, preventing additional computation. These design

choices allow QHM-GAN to achieve fast inference.

In contrast to methods like HiFi-GAN, which map mel-spectrograms directly to time-domain

waveforms, the DNN component of QHM-GAN is designed to produce sparse spectral parame-

ters, namely, amplitude and phase, greatly reducing the network’s learning burden. As a result, the

generator can be simplified by decreasing either the number of multi-receptive field (MRF) mod-

ules or the dilation rates in each MRF block, while still retaining adequate capacity to accurately

estimate the parameters.

Preliminary experimental results indicate that decreasing the number of MRF modules and

dilation rates has minimal impact on the quality of the synthesized speech. This observation

demonstrates the feasibility of employing QHM-GAN in real-time speech synthesis applications.

4.2.4 Potential Limitation of QHM-GAN

To preliminarily validate the effectiveness of integrating QHM with neural networks, we con-

ducted exploratory experiments to evaluate the performance of QHM-GAN, showing that QHM-

GAN successfully integrates the strengths of neural networks and QHM. On the one hand, QHM-

GAN achieves the fast inference capability of neural networks; on the other hand, it inherits

the interpretability of CSP-based methods while maintaining high-quality speech reconstruction.

These findings suggest that combining QHM with neural networks is both feasible and promis-

ing. Nevertheless, since the speech generation process is still grounded in the QHM framework,

certain inherent limitations of QHM remain, leaving QHM-GAN with some shortcomings. The

main potential issues can be summarized as follows:

• QHM models unvoiced segments using quasi-harmonics, despite the fact that unvoiced

speech are inherently random noise. This mismatch can lead to inaccurate modeling and

degraded synthesis quality, particularly when the frame shift is large. QHM-GAN suffers
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from the same issue.

• QHM does not explicitly model formant characteristics, and thus requires additional meth-

ods, such as linear predictive coding (LPC) [54] or discrete all-pole (DAP) [94], for formant

modeling. This limitation also applies to QHM-GAN. Although QHM-GAN provides inter-

pretable parameters, the estimation process is still carried out by a black-box model, making

the modeling of the spectral envelope implicit. As a result, the modeling of the spectral enve-

lope is affected by the data-hungry nature of the system. For example, although QHM-GAN

has a good generalization ability, when generating speech with a f0 that lies far outside the

range observed in the training data, it becomes difficult to accurately model the spectral

envelope. This leads to abnormal amplitude and phase compensation, ultimately degrading

the quality of the synthesized speech.

• Owing to its quasi-harmonic modeling, QHM-GAN is well suited for such tasks. However,

the implicit spectral envelope modeling limits the performance of QHM-GAN in speech

modification, which involves altering f0 or duration while preserving the short-time spectral

envelope. For time-scale modification, framewise parameters can be temporally stretched

or compressed via interpolation with a modified frame-shift, easily preserving the spectral

envelope and yielding high-quality waveform scaling. In contrast, pitch-scale modifica-

tion is more challenging, as QHM-GAN does not explicitly model the spectral envelope,

limiting its ability to accurately estimate amplitudes for modified f0 values, since the mod-

ified f0 is usually out of the distribution of the training dataset. Informal experiments show

that directly inputting modified f0 leads to inaccurate amplitude predictions, especially for

extreme pitch values, due to the lack of training references outside the original pitch dis-

tribution. To address this limitation, the spectral envelope must be estimated to constrain

amplitude during pitch modification. One approach is to fix the envelope from the origi-

nal speech and modify pitch accordingly, using conventional methods such as LPC or DAP.

However, these methods often lack robustness and accuracy, reducing synthesis quality and

limiting pitch-scale modification effectiveness.

To address the limitations discussed above, we are motivated to employ neural networks to

model formant information. This approach allows for accurate estimation of amplitudes for arbi-

trary f0 values, including those that fall outside the distribution of the training data. A detailed

discussion of this method is provided in the next section.

4.3 ARMA Embedding

As discussed above, QHM-GAN lacks the ability to model the spectral envelope and therefore

exhibits limited performance in pitch-scale speech modification. Therefore, additional LPC or

DAP should be employed to take over this task. Whatever LPC or DAP, they are autoregressive
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(AR). However, as introduced in Chapter I, the speech is generated by vocal tract filtering the

excitation signals from the glottis. Therefore, speech signals are influenced not only by preceding

samples but also by the excitation. To address this, we propose an autoregressive moving average-

based (ARMA) approach to model formant characteristics. Additionally, we also embed this

ARMA structure into the neural networks to improve the accuracy and efficiency of the estimation.

To overcome the limitation of QHM-GAN in resonance characteristic modeling, we enhance

the generator by integrating an ARMA model. The ARMA model is capable of capturing the

spectral envelope characteristics of speech, which are closely associated with the resonances of

the vocal tract and are essential for maintaining the naturalness and intelligibility of modified

speech.

In the enhanced framework, the generator estimates the coefficients of the ARMA model from

the mel-spectrogram and fundamental frequency. The quasi-harmonic parameters are obtained

from ARMA and control the fine structure of the speech signal. Specifically, the estimated ampli-

tude is modulated by the learned spectral envelope in the frequency domain to ensure consistency

with the target resonance characteristics. This allows the model to preserve the spectral shape

even under pitch-scale modifications, where the harmonic structure is changed but the envelope

should remain fixed.

In this section, we present a detailed formulation of the enhanced QHM-GAN architecture,

describe the embedding strategy of the ARMA model within the generator, and demonstrate its

advantages in various speech modification tasks.

4.3.1 ARMA Modeling

In this section, the modeling process of the autoregressive moving average model will be intro-

duced in detail.

Linear predictive coding has long been regarded as a fundamental technique in speech process-

ing due to its proficiency in analyzing discrete time-series signals. It models the current sample

of a signal as a linear combination of its previous samples, effectively capturing the short-term

spectral envelope of speech. However, the LPC model, which corresponds to a pure autoregressive

process, often falls short in modeling the stochastic components of real-world signals, particularly

in representing resonances with sharp anti-resonant behavior. Additionally, the speech signals are

generated from filtering the excitation signals from the glottis. This indicates that considering the

previous samples from itself is not enough for a speech signal. The previous samples of excitation

signals are also significant for the modeling.

To address this limitation, the autoregressive moving average (ARMA) model will be intro-

duced. Considering a system, the output signal is the result by filtering the input signal, and the

system itself is the filter. Unlike LPC, which only considers the previous samples of output sig-

nals, ARMA incorporates both past output signals and past input signals, thereby offering a more
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flexible framework for signal representation. The ARMA model predicts the current output x(t)

by combining a weighted sum of previous outputs and a weighted sum of past inputs as

x(t) =−
P

∑
p=1

apx(t− p)+G
Q

∑
q=0

bqu(t−q), (4.7)

where ap and bq are the coefficients of the autoregressive and moving average parts, respectively.

Here, b0 = 1 for normalization, G denotes the global gain of the system, and u(t) is the input

signal, where x(t) is the output signal. The ARMA model is parameterized by the orders P and

Q, which determine the memory length of the autoregressive and moving average processes. The

z transform of Eq. (4.7) can be easily obtained by
(

1+
P

∑
p=1

apz−p

)
X(z) = G

(
1+

Q

∑
q=1

bqz−q

)
U(z)

X(z) = G
1+∑

Q
q=1 bqz−q

1+∑
P
p=1 apz−p

U(z), (4.8)

where X(z) and U(z) are the z transforms of x(t) and u(t). Then, the transfer function of such a

system, namely, the ARMA, can be modeled in the z domain as

H(z) =
X(z)
U(z)

= G
1+∑

Q
q=1 bqz−q

1+∑
P
p=1 apz−p

, (4.9)

where H(z) is the transfer function. Its frequency response can be modeled as

H(ω) = H(z)|z=eiw =
X(eiω)

U(eiω)
= G ·

1+∑
Q
q=1 bqe−iωq

1+∑
P
p=1 ape−iω p

, (4.10)

where z = eiω is considered.

In the context of speech, which is inherently a time-varying signal, the ARMA model serves as

a powerful tool to model the resonant behavior of the vocal tract. By treating the excitation u(t)

as the quasi-periodic source from the vocal folds, and x(t) as the corresponding output waveform,

the ARMA model essentially acts as a framewise resonance filter. Within each analysis frame, we

assume the speech is locally stationary within a frame and denote the frame-dependent ARMA

parameters as al
p, bl

q, and Gl for the l-th frame. Thus, the sequence-wise speech signals can be

modeled by a time-varying ARMA function, which models the signal in each frame with time-

varying coefficients. Next, we focus on the l-th frame.

To formulate the excitation signal at the l-th frame, we follow the harmonic assumption and

express the input as a sum of sinewaves (i.e., harmonic components) with unit amplitudes:

ul(t) =
K

∑
k=−K

ei2π f̂ l
kt , t ∈ [−Tl,Tl], (4.11)
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where f̂ l
k = k f̂ l

0 represents the harmonic frequency components derived from the estimated pitch

f̂ l
0 in the l-th frame.

Given this excitation, we can consider the time-varying ARMA transfer function as a time-

frequency representation in the time-frequency domain, whose value at the l-th frame can be

computed as:

H(tl,ω) =
X(tl,ω)

U(tl,ω)
= Gl ·

1+∑
Q
q=1 bl

qe−iωq

1+∑
P
p=1 al

pe−iω p
. (4.12)

This transfer function characterizes the magnitude and phase response of the vocal tract at each

frame.

The amplitude and phase of each harmonic component in the output signal xl(t) can then be

computed directly from H(tl,ωk), where ωk = 2π f̂ l
k:

Âk(tl) = |H(tl,ωk)|= |Gl| ·

∣∣∣1+∑
Q
q=1 bl

qe−iωkq
∣∣∣

∣∣1+∑
P
p=1 al

pe−iωk p
∣∣ , (4.13)

ϕ̂k(tl) = ϕ
u
k (tl)+∠H(tl,ωk). (4.14)

Here, ϕu
k (tl) denotes the phase of the excitation signal at frame center tl , obtained by integrating

the instantaneous frequency:

ϕ
u
k (tl) =

∫ tl

0
2π f̂k(u)du, (4.15)

where f̂k(u) is the interpolated instantaneous frequency corresponding to the k-th harmonic.

Clearly, once the ARMA coefficients are known, the amplitude and phase of each frequency

component can be derived analytically using Eqs. (4.13) and (4.14). This formulation provides

a principled and efficient method for speech resynthesis. Furthermore, it offers a direct pathway

for speech modification: when modifying the f0, the new harmonic components can be mapped

through the same ARMA filter to compute their corresponding amplitude and phase responses.

This ensures consistency of the spectral envelope during pitch modification, a feature that con-

ventional vocoders often struggle to preserve.

To estimate the ARMA parameters, we can extend the generator structure of QHM-GAN by

appending three separate convolutional heads to predict the gain Gl , the AR coefficients al
p, and

the MA coefficients bl
q, respectively. The output layer thus consists of 1, P, and Q channels.

These parameters, once obtained, are used to compute the harmonic amplitudes and phases for

speech generation. The process remains fully differentiable and can be optimized end-to-end

using standard gradient descent.

In summary, the integration of ARMA into the QHM-GAN framework allows for effective

modeling of the spectral envelope, thereby addressing one of the key limitations of the original

QHM-GAN. The resulting model can achieve accurate and flexible speech synthesis and modi-
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fication, particularly in pitch-scaling scenarios where envelope preservation is critical. Thus, we

are motivated to integrate the ARMA into the neural networks.

4.3.2 Wide-band Frequency Correction via Cascaded ARMA Modeling

In the original QHM-GAN framework, phase correction is implemented via a learnable phase

compensation term, which is designed to offset the error between the predicted and the actual

rotation angle within each frame. This phase compensation operates on a per-frame basis and can

be accumulated across frames during the frequency refinement stage. As this term is generated

independently for each frame, it is advisable to constrain it within a principal value range, i.e.,

[−π,π], to ensure stability and prevent phase wrapping issues, especially when performing wide-

band frequency correction.

In contrast, phase delay arises from the frequency response of the resonance filter (e.g., ARMA),

and it affects the unwrapped phase directly. Importantly, this phase delay is inherently continuous

across frames and can influence both the current and adjacent frames during frequency estimation.

Thus, this will somewhat hinder the performance of frequency correction.

Here, we compare phase compensation and phase delay in frequency correction with their for-

mulations. Assuming that the frequency remains constant within each frame, the correction of

frequency error ∆ f l
k for the k-th harmonic at frame l can be derived from the difference in un-

wrapped phase between two consecutive frames:

∆ f l
k =

ϕ̂k(tl)− ϕ̂k(tl−1)

2π(tl− tl−1)
− f̂ l

k, (4.16)

where ϕ̂k(tl) is the synthesized phase at time tl and f̂ l
k is the estimated instantaneous frequency at

the l-th frame. Let ∆t = tl− tl−1 be the constant frame shift.

First, we focus on the phase delay. If we denote the frequency correction derived from phase

delay as ∆ f̌ l
k , then the cumulative correction over L frames can be expressed as:

L

∑
l=1

∆ f̌ l
k =

L

∑
l=1

∠H(tl,ωk)−∠H(tl−1,ωk)

2π∆t

=
∠H(tL,ωk)−∠H(t0,ωk)

2π∆t
∈
[−1

∆t
,

1
∆t

]
, (4.17)

assuming that the phase delay from the ARMA filter, i.e., ∠H(tl,ωk), lies within [−π,π].

On the other hand, for the phase compensation term used in QHM-GAN (denoted here as ∆ϕ l
k),

the corresponding cumulative frequency correction is given by:

L

∑
l=1

∆ f́ l
k =

∑
L
l=1 ∆ϕ l

k
2π∆t

∈
[−L

2∆t
,

L
2∆t

]
. (4.18)

A direct comparison between Eq. (4.17) and Eq. (4.18) reveals that the correction range induced
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by phase delay is inherently limited when L > 2. This limitation hinders the ability to perform

wide-band frequency correction using only the ARMA phase response. To enhance the correction

range, we propose extending the permissible phase delay range from [−π,π] to [−rπ,rπ], where

r is a scaling factor that determines the degree of expansion.

To this end, we propose a novel mechanism by factorizing the ARMA model into a cascade

of r mini ARMA modules. This is achieved by evenly dividing the AR and MA coefficients of

the entire ARMA functions into r groups, denoted as a j,p and b j,q for j = 1, . . . ,r. The original

frequency response in Eq. (4.10) is then restructured as a product of r mini-ARMA systems:

H(tl,ω) = Gl

r

∏
j=1

H̃ j(tl,ω), (4.19)

where each mini-model H̃ j(tl,ω) is defined as

H̃ j(tl,ω) =
1+∑

Q/r
q=1 bl

j,qe−iωq

1+∑
P/r
p=1 al

j,pe−iω p
. (4.20)

This cascaded formulation allows each mini-ARMA model to contribute its own phase delay,

and their summation yields an aggregated phase delay:

Âk(tl) = Gl

r

∏
j=1
|H̃ j(tl,ωk)|= Gl

r

∏
j=1

∣∣∣∣∣∣
1+∑

Q/r
q=1 bl

j,qe−iωq

1+∑
P/r
p=1 al

j,pe−iω p

∣∣∣∣∣∣
, (4.21a)

∠H(tl,ωk) =
r

∑
j=1

∠H̃ j(tl,ωk). (4.21b)

As a result, the total phase delay becomes unbounded by [−π,π], and is instead scaled up to

[−rπ,rπ], significantly enlarging the dynamic range of frequency correction. This enables the

model to perform robust wide-band refinement, especially beneficial for tasks involving large

pitch shifts or expressive speech synthesis. Then, we can integrate this mechanism into QHM-

GAN to improve the ability to model resonance characteristics.

4.3.3 QHARMA-GAN

Building upon the cascaded formulation of the ARMA model, we proceed to integrate this en-

hanced resonance modeling mechanism into a neural vocoder architecture that inherits the QHM

structure. A natural and effective approach is to embed the cascaded ARMA module directly

into the generator of QHM-GAN, thereby extending its modeling capacity while retaining its core

advantages.

In this section, we present the complete integration of the cascaded ARMA model into the

QHM-GAN framework. The resulting vocoder, referred to as QHARMA-GAN, is a novel archi-
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tecture that unifies harmonic component modeling, deep neural estimation, and cascaded spectral

envelope modeling. By leveraging the resonance modeling ability of ARMA and the frequency-

continuous representation of QHM, QHARMA-GAN offers a powerful solution for high-fidelity

and controllable speech synthesis.

The detailed structure, training strategy, and synthesis procedure of QHARMA-GAN will be

elaborated in the following subsections.

Generator Structure: Similar to QHM-GAN, the generator of QHARMA-GAN is composed

of two main components: a DNN module and a CSP module. In the case of QHM-GAN, the

DNN is responsible for estimating interpretable framewise parameters, namely, the amplitude and

phase compensation for each harmonic component, while the CSP module reconstructs the final

waveform from these parameters. In QHARMA-GAN, a similar division of labor is adopted. The

DNN module estimates the ARMA coefficients, and the CSP module utilizes these coefficients,

along with the harmonic structure inferred from the f0, to synthesize the final speech waveform.

The overall generator architecture of QHARMA-GAN is illustrated in Fig. 4.4. As shown, its

structure closely mirrors that of QHM-GAN, particularly in terms of the use of MRF modules. In

fact, the configuration and design of MRF modules in QHARMA-GAN are kept identical to those

in QHM-GAN to ensure consistent temporal modeling capacity.

A key distinction, however, lies in the input representation and parameter prediction strategy.

Unlike QHM-GAN, QHARMA-GAN no longer requires the input of f0 into the DNN mod-

ule. This is because the ARMA coefficients inherently model the frequency-dependent spec-

tral shaping characteristics, effectively absorbing both the resonance behavior and the frequency

mismatches. As a result, f0 is only utilized within the CSP module to construct harmonic ex-

citation components, as shown in Fig. 4.5. Consequently, the frequency-related F-CNNs used

in QHM-GAN are no longer necessary, simplifying the network architecture and reducing the

computational load of the DNN component.

Nonetheless, while the DNN part of QHARMA-GAN is simplified compared to QHM-GAN,

the computational complexity of the CSP module increases slightly due to the additional steps

involved in deriving amplitude and phase from the ARMA frequency response. Specifically,

the ARMA-based spectral shaping requires the calculation of the magnitude and phase delay for

each harmonic component using Eqs. (4.13) and (4.14). These framewise amplitude and phase

values are then interpolated to obtain the instantaneous amplitude (via linear interpolation) and

instantaneous phase (via cubic interpolation). Finally, the speech waveform is synthesized by

summing all quasi-harmonic components generated from these interpolated parameters.

Despite the increased complexity in the CSP module, the overall computational efficiency of

QHARMA-GAN remains comparable to that of QHM-GAN. The reduction in DNN complexity

compensates for the additional operations in the CSP stage. Furthermore, since both architec-

tures avoid upsampling and transposed convolutions, they are well-suited for real-time speech
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Figure 4.4: Structure of QHARMA-GAN generator, which takes mel-spectrogram as inputs and outputs
framewise ARMA coefficients. The framewise amplitude and phase will be calculated by the corresponding
ARMA function to generate the speech waveform along with the frequency.
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Frame-wise data
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,

,
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Figure 4.5: Structure of DNN part of QHARMA-GAN generator. The configurations of all MRFs in the
generator are the same as those of QHM-GAN in Fig. 4.3.

Algorithm 3 Speech Synthesis based on QHARMA-GAN.

Step 1: Preprocessing and Setting
Extract the f̂k and mel-spectrogram from speech x(t); set sampling rate fs, harmonic number K and
frame-shift ∆t; obtain al

j,p and bl
j,q from DNN;

Step 2: Instantaneous amplitude and phase
Get framewise amplitude and phase delay by Eq. (4.19)-(4.21);
Compute unwrapped framewise phase ϕ̂k(tl) by Eq. (4.14);
Cubically interpolate ϕ̂k(tl) into ϕ̂k(t);
Linearly interpolate Âk(tl) into Âk(t);
Step 3: Generation
x̂(t)← ∑

K
k=−K Âk(t)eiϕ̂k(t);

Output: x̂(t)

synthesis.

The complete synthesis procedure of QHARMA-GAN is summarized in Algorithm 3.
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Discriminator Design: The training of QHARMA-GAN adopts a carefully designed adversar-

ial framework to effectively supervise both voiced and unvoiced speech generation. Based on

our preliminary experimental analysis, we observe that different discriminator architectures offer

complementary advantages. Specifically, the multi-resolution discriminator (MRD) and multi-

period discriminator (MPD) exhibit strong capability in capturing the periodic structure of speech,

thereby providing effective guidance for the generator to synthesize high-fidelity voiced speech

characterized by rich harmonic structures. In contrast, the multi-scale discriminator (MSD), which

analyzes speech signals at different temporal resolutions, proves more effective in guiding the gen-

erator to produce natural-sounding unvoiced speech, which is inherently stochastic and lacks clear

periodicity.

Motivated by these observations, QHARMA-GAN integrates all three discriminators, i.e., MRD,

MPD, and MSD, into its discriminator module. This ensemble allows for comprehensive adver-

sarial feedback, ensuring that both harmonic and stochastic components of the synthesized speech

are perceptually and structurally plausible. The combination of these discriminators has been em-

pirically shown to strike a good balance between harmonic continuity and spectral richness across

different phonetic contexts.

4.3.4 Source-Filter Modeling based on QHARMA-GAN

As the introduction above states, QHARMA-GAN uses neural networks to build the ARMA

model to explicitly shape the resonance characteristics, which can be considered as the filter. The

framewise frequencies are used to generate the framewise phase of the excitation signal, which

can be considered as the source. Thus, QHARMA-GAN also has a source-filter structure and the

ability to separate the source part and filter part.

To qualitatively evaluate the capability of QHARMA-GAN in modeling the resonance char-

acteristics of speech, we present a detailed spectral analysis based on a representative utterance.

As shown in Fig. 4.6(a), the ground truth waveform of the selected utterance is depicted as the

reference for subsequent analysis.

To further investigate the spectral properties, we compute and visualize both the magnitude and

phase spectra of the speech signal, as well as those of the estimated ARMA filter. Specifically,

Figs. 4.6 (b) and (d) illustrate the decibel-scale magnitude spectrum and wrapped phase spectrum

of the ground truth speech, respectively. In contrast, Figs. 4.6 (c) and (e) depict the corresponding

spectral response generated by the ARMA model inferred by QHARMA-GAN, where the autore-

gressive and moving average orders are set to P = 128 and Q = 128, respectively, and the number

of cascaded stages is set to r = 8.

A visual comparison reveals that the magnitude and phase responses reconstructed by the

QHARMA-GAN exhibit a smooth spectral envelope that aligns closely with the harmonic struc-

ture of the original signal. The reconstructed spectral envelope effectively captures the resonance
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characteristics, which are independent of the excitation signal. In particular, even when the f0

is arbitrarily specified, the smoothness and coherence of the generated spectral envelope remain

consistent, highlighting the model’s generalization capability. Thus, QHARMA-GAN can syn-

thesize high-quality speech with ease and proficiency, even when the f0 is out of the distribution

of the training data.

These observations demonstrate that the ARMA-based spectral envelope modeled by QHARMA-

GAN is capable of approximating the true resonance characteristics of speech. This further im-

plies that QHARMA-GAN successfully separates the excitation and system components in the

source-filter framework, and enables flexible, high-fidelity speech synthesis and modification.

4.4 Experimental Evaluations

4.4.1 Experimental Design and Evaluation Aspects

To comprehensively assess the performance of the proposed methods, including QHM-GAN and

QHARMA-GAN, we conduct a series of experiments and compare them against several state-

of-the-art neural vocoders. The evaluation focuses on multiple aspects such as speech synthesis

quality, generation speed, and model efficiency. Both objective and subjective metrics are em-

ployed to quantify the synthesis performance.

The detailed experimental conditions and results are presented and discussed in the following

subsections. The experiments consist of four parts.

(1) The confirmatory experiment for QHM-GAN.

Before conducting comprehensive evaluations across all methods, we first design a dedi-

cated experiment specifically for QHM-GAN. The objective of this preliminary experiment

is to verify the feasibility of integrating the QHM structure with neural network architec-

tures, and to investigate whether the proposed QHM-GAN can simultaneously inherit the

advantages of both conventional signal-processing-based approaches and modern neural

vocoders. In this experiment, we employ both objective and subjective evaluation metrics to

assess the synthesis quality, providing an initial validation of the effectiveness and potential

of the QHM-GAN framework.

(2) The preliminary experiments to show the best vocoders in candidate methods.

First, we uses objective measurement indicators to assess the performances of all neural

vocoders in terms of synthesis quality. Subsequently, the screened-out methods, including

the best one of other neural vocoders and the best one between QHM-GAN and QHARMA-

GAN, will be compared with the conventional vocoders, such as WORLD and QHM.

(3) The synthesis experiment of selected neural and conventional vocoders.
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Figure 4.6: (a) Ground truth of utterance sample. Magnitude spectra of (b) ground truth and (c) correspond-
ing ARMA response. Phase spectra of (d) ground truth and (e) corresponding ARMA response.

Second, both objective and subjective evaluation metrics are jointly employed to compre-

hensively assess the quality of the speech synthesized by all candidate methods. The objec-
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tive metrics provide quantifiable measurements of intelligibility and spectral fidelity, while

the subjective evaluations reflect human perceptual preferences and naturalness. This com-

bined evaluation strategy ensures a thorough and balanced assessment of the synthesis per-

formance.

(4) The time complexity and execution efficiency of QHM-GAN and QHARMA-GAN com-

pared with baseline neural vocoders and conventional vocoders.

Third, in terms of time complexity, the actual runtime of each method, including all con-

ventional, neural, and proposed approaches, is systematically measured under consistent

experimental conditions. This comprehensive analysis highlights the trade-offs between

modeling accuracy and computational efficiency, which are critical considerations for real-

world applications where latency and resource constraints are of paramount importance.

(5) The generalization ability of neural vocoders.

Finally, to evaluate the generalization capability, which is a critical property for neural

vocoders, we assess the performance of all candidate neural vocoders under two challenging

scenarios: out-of-distribution (OOD) generalization and few-shot learning. These evalua-

tions aim to verify whether the models can maintain synthesis quality when confronted with

unseen conditions or when trained with limited data. Since the data-hungry issue is essential

for real-world applications.

Through these evaluations, we aim to demonstrate that QHM-GAN and QHARMA-GAN not

only possess the advantages of conventional QHM methods, such as pitch controllability and

source-filter modeling, but also achieves robust and high-quality generation of the synthesized

speech.

4.4.2 Experiment Conditions

Here, we introduce the experiment conditions in detail.

Optimizer: To empirically validate the effectiveness of all neural methods and to ensure the

robustness of the evaluation across diverse conditions, experiments are conducted using multi-

ple datasets under rigorously defined optimization settings. The Adam optimizer [85] is utilized

throughout the training process due to its adaptive learning rate mechanism and proven effective-

ness in deep neural network training.

A step-decay learning rate schedule is adopted in the optimization setup. Specifically, the initial

learning rates for both the generator and discriminator are set to 0.0002. To facilitate convergence

and mitigate overfitting, the learning rates are halved every 200,000 epochs. The total number of

optimization iterations is fixed at 1,000,000.
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Dataset: The speech utterances used in the experiments are randomly selected from three rep-

resentative open-source corpora, covering both single-speaker and multi-speaker datasets: the

LJSpeech dataset [88], sampled at 22.05 kHz; the VCTK corpus [95], comprising 110 speak-

ers sampled at 24 kHz; and the Japanese Versatile Speech (JVS) corpus [96], consisting of 100

speakers sampled at 24 kHz.

For the JVS dataset, the utterances are divided into training, validation, and test sets using a

ratio of 80% / 10% / 10%. In the case of the VCTK corpus, all utterances from two unseen

speakers (p271 and p300) are reserved exclusively for testing and excluded from the training

process. The remaining speakers in the VCTK corpus follow the same 80% / 10% / 10% split

strategy as applied to the JVS and LJSpeech datasets. Finally, for the LJSpeech dataset, a ratio of

919/250/250 for training, validation, and test sets is used.

Initialization and Parameter Setting: For all neural methods, the same loss function configuration

is adopted to ensure consistency in evaluation. Specifically, both the discriminator loss and gener-

ator loss are employed. The generator loss comprises the mel-spectrogram loss, feature matching

loss, and adversarial loss, each weighted by the same predefined coefficients across methods. The

Fast Fourier Transform (FFT) length for computing the mel-spectrogram loss is set to Nfft = 2048.

Regarding preprocessing, the frame shift for both the mel-spectrogram input and the f0 is fixed

at 8 ms. The f0 values are extracted using the Harvest algorithm [18]. For the initialization of

neural network parameters, standard Gaussian noise is applied to generate initial values.

For QHM-GAN and QHARMA-GAN, the number of harmonic components K is determined by

the sampling rate of each dataset. Specifically, K = 128 is used for LJSpeech (22.05 kHz), while

K = 256 is applied to both the VCTK and JVS corpora (24 kHz). Additionally, for QHARMA-

GAN, the orders of the autoregressive and moving average filters are both set to 256, and the

downsampling parameter r is set to 8.

Measurements: To quantitatively evaluate the performance of the proposed QHM-GAN and

QHARMA-GAN, along with baseline neural and conventional methods, a series of objective and

subjective metrics are employed. These metrics are designed to capture multiple aspects of sys-

tem behavior, including reconstruction quality, frequency accuracy, voiced/unvoiced (V/UV) clas-

sification accuracy, intelligibility, and computational efficiency. This comprehensive evaluation

framework facilitates a thorough comparison of the strengths and limitations of each candidate

method.

It is important to note that a consistent notation is adopted across all metrics: an upward arrow

(↑) indicates that higher values correspond to better performance, while a downward arrow (↓)
signifies that lower values are preferable.

1) V/UV Error Rate [%] ↓: This metric quantifies the percentage of incorrect classifications
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between voiced and unvoiced segments. Voiced speech refers to segments with vocal fold

vibration, whereas unvoiced speech corresponds to segments generated by turbulent airflow

without vocal fold activity. Voicing decisions are based on whether the f0 value detected

by Harvest [18] is zero (unvoiced) or non-zero (voiced). The V/UV rate is computed by

comparing the voicing decisions between the generated and reference speech signals.

2) f0 RMSE [Hz] ↓: The root mean squared error of the logarithmic f0 values between the

generated and reference speech, both detected using Harvest. This metric evaluates pitch

reconstruction accuracy and pitch controllability.

3) PESQ ↑: The Perceptual Evaluation of Speech Quality (PESQ) assesses the perceptual

quality of synthesized speech by computing the perceptual spectral distance between the

generated and reference signals. Higher PESQ scores are associated with improved speech

quality.

4) UTMOS1 ↑: UTMOS is a neural network-based model [97] designed to predict the Mean

Opinion Score (MOS) from synthesized speech signals. It serves as a non-intrusive, auto-

mated estimate of subjective naturalness and is used to screen for perceptual quality across

systems.

It is worth noting that STOI, MCD, MOS, RTF were also employed to measure the performance

of synthesis quality and efficiency, which were introduced in Section IV of Chapter III.

For the model candidates, HiFi-GAN, Vocos [5], DDSP [98], and hn-NSF [7] are chosen as

representative neural vocoders, whereas QHM and WORLD serve as conventional CSP vocoders.

These are compared with the proposed QHM-GAN and QHARMA-GAN. Additionally, a lightweight

version of QHARMA-GAN, referred to as QHARMA-GAN-small, is included to explore the

trade-off between model complexity and performance. A summary of all evaluated models is

presented below:

1) WORLD [2]: A traditional CSP-based source-filter vocoder that allows flexible manipula-

tion of acoustic features, including f0. It decomposes speech into spectral envelope, ape-

riodicity, and f0, and resynthesizes speech by combining these components through signal

processing. WORLD is widely used as a baseline in vocoding and voice conversion tasks

due to its interpretability and reasonable synthesis quality.

2) QHM [34]: A quasi-harmonic modeling method that includes a frequency correction mech-

anism to enhance the harmonic structure of speech. It estimates frame-wise complex am-

plitudes for each quasi-harmonic component, enabling adaptive frequency correction. The

corrected frequencies and amplitudes are then used to synthesize high-fidelity speech, which

can be further modified in time and frequency domains using Discrete Amplitude Phase

(DAP) representations.
1https://github.com/sarulab-speech/UTMOS22
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3) HiFi-GAN [4]: A widely adopted high-quality neural vocoder that synthesizes speech from

acoustic features through a generator network based on progressive transposed convolutions.

It employs MRF modules to capture temporal context at different scales. To improve percep-

tual quality, it incorporates adversarial training with MPD and MSD, guiding the generator

to produce realistic and natural-sounding speech. We included HiFi-GAN as a baseline

because it is one of the most widely used neural vocoders and is known for its strong per-

formance across various tasks. Although HiFi-GAN does not condition on f0, it serves as a

representative baseline to compare with our proposed method.

4) Vocos [5]: An efficient neural vocoder that replaces conventional upsampling modules with

ConvNeXt blocks to directly predict complex-valued spectrograms. The waveform is recon-

structed using inverse Short-Time Fourier Transform (iSTFT). MPD and MRD are used as

discriminators during training. In addition, to test if Vocos is able to modify f0, we intro-

duced f0 conditioning to enable pitch modification, which is proposed in [99], and ensure a

fair comparison with our f0-conditioned models.

5) DDSP [98]: A neural vocoder based on a sinusoidal signal model with explicit f0 input.

It decomposes audio into harmonic and noise components, which are parameterized by in-

terpretable features such as amplitude, phase, and spectral shape. The differentiable DSP

modules synthesize the waveform by summing the sinusoidal and filtered noise signals.

This model enables fine-grained pitch control and interpretable synthesis through structured

priors.

6) hn-NSF [7]: A neural source-filter vocoder that synthesizes speech using a harmonic-plus-

noise excitation signal derived from f0 priors. The excitation is passed through a learnable

filter, which adapts its spectral response to produce the final waveform. During training, ad-

versarial supervision is applied using HiFi-GAN discriminators, helping the model generate

high-quality, natural speech. This architecture supports direct pitch modification and has

been successfully applied in pitch-editable synthesis tasks.

7) QHM-GAN: Our proposed model that integrates CSP-based QHM with neural networks for

flexible and high-quality speech synthesis. The architecture consists of four MRF modules,

each containing three convolutional kernels with dilation rates of 1, 3, and 5. A neural net-

work maps mel-spectrograms to frame-wise complex amplitudes and phase compensation

terms, which are then passed to the QHM synthesizer for waveform generation. Adversarial

training is applied using MRD and MPD to enhance the fidelity and realism of the output.

8) QHM-GAN-S: A variant of QHM-GAN designed to investigate the effect of different in-

put representations. Instead of mel-spectrograms, it uses spectral envelopes extracted by

WORLD as input to the neural network. This enables direct comparison between conven-

tional and learned spectral representations in QHM-based synthesis.
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9) QHM-GAN-small: A lightweight version of QHM-GAN targeting reduced model size and

improved computational efficiency. It contains three MRF modules, each composed of three

convolutional layers with a fixed dilation rate of 1. Despite its compactness, adversarial

training with MRD, MSD, and MPD is retained to preserve synthesis quality.

10) QHARMA-GAN: Our proposed extension of QHM-GAN that incorporates autoregressive

moving average (ARMA) modeling for better spectral envelope representation. The ar-

chitecture remains similar to QHM-GAN with four MRF modules, but instead of directly

predicting complex amplitudes, the network maps mel-spectrograms to ARMA coefficients.

These coefficients control the synthesis process, providing explicit control over spectral

shaping. MRD, MSD, and MPD are employed to enhance both stability and perceptual

quality.

11) QHARMA-GAN-small: A compact version of QHARMA-GAN optimized for efficiency.

It comprises three MRF modules with fixed dilation rates, similar to QHM-GAN-small, and

predicts ARMA parameters from mel-spectrograms. MRD, MSD, and MPD are adopted

during training to ensure quality is maintained despite reduced model capacity.

This experimental design facilitates a comprehensive evaluation of QHM-GAN and QHARMA-

GAN under realistic and diverse acoustic scenarios. Furthermore, the structured optimization pro-

tocol and principled parameter initialization enhance both the reproducibility and the reliability

of the experimental results.

4.4.3 Confirmatory Experiment for QHM-GAN

As mentioned earlier in Section 4.2.4 in this Chapter, we carried out a preliminary experiment on

QHM-GAN to examine its potential benefits. In this section, we present the detailed results and

analysis of this experiment, which confirm and extend the initial observations. The experiment

was based on the comparison between QHM-GAN and some widely used methods (including

WORLD, QHM, HiFi-GAN, and DDSP), where all methods were trained using LJSpeech [88].

We also use different types of QHM-GAN as the candidates, i.e., QHM-GAN with spectral enve-

lope as the input (QHM-GAN-S) and QHM-GAN with a simplified DNN structure (QHM-GAN-

small).

To evaluate the generation efficiency, we employed the real-time factor (RTF) on both a single

CPU and a GPU as the primary metric. For assessing intelligibility and perceptual quality, we

adopted the short-time objective intelligibility (STOI) [93], mel-cepstral distortion (MCD), and

mean opinion scores (MOS). The MOS evaluation involved 15 human subjects, each of whom

was asked to rate 12 utterances generated by each method.

Table 4.1 summarizes the quantitative results. QHM achieves the best objective quality, with the

highest STOI and lowest MCD, owing to its direct waveform modeling and adaptive frequency ad-
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Table 4.1: Results of objective and subjective evaluations. The MOS of the ground truth samples was
3.96±0.09.

WORLD QHM HiFi-GAN DDSP QHM-GAN QHM-GAN-S
QHM-GAN

-small

STOI ↑ 0.959 0.984 0.968 0.947 0.972 0.973 0.970

MCD [dB] ↓ 2.815 1.670 2.975 3.486 2.747 2.440 2.842

MOS ↑ 3.74±0.06 333...888666±±±000...111111 3.78±0.09 3.27±0.14 3.81±0.09 3.73±0.12 3.80±0.14

RTF(CPU) ↓ 2.265 50.245 0.909 0.789 0.888 0.891 0.512

RTF(GPU) e-3 ↓ 14.5 6.6 5.8 5.8 1.9

justment. QHM-GAN follows closely, with QHM-GAN-S showing favorable performance among

its variants. Compared to HiFi-GAN, DDSP, and WORLD, all QHM-GAN variants achieve supe-

rior MCD and STOI, confirming the effectiveness of the proposed method. In perceptual evalua-

tion, QHM attains the highest MOS, followed by QHM-GAN; notably, QHM-GAN-3-1 provides

competitive quality with a substantially smaller model size. HiFi-GAN achieves high MOS but in-

troduces frequency distortions, whereas QHM-GAN produces smoother and more natural speech

by leveraging continuous frequency trajectories.

In terms of efficiency, QHM-GANs outperform other neural vocoders on a single GPU. QHM-

GAN-3-1 further reduces computational costs and achieves near real-time CPU performance (RTF

= 0.512). In contrast, QHM shows the highest RTF due to frame-by-frame analysis, making it

unsuitable for real-time applications.

In summary, the experimental results demonstrate that QHM-GAN can simultaneously inherit

the strengths of neural networks and QHM. Nevertheless, the limitations of QHM still remain, de-

grading the performance of QHM-GAN in terms of synthesis. Besides, the lack of resonance char-

acteristic modeling inevitably limits the performance of speech modification, particularly from the

perspective of pitch-scale modification. Therefore, the ARMA model was employed to be embed-

ded into the QHM-GAN for achieving the resonance characteristic modeling and improving the

quality of pitch-scale speech modification.

4.4.4 Preliminary Experiments for Baseline Screening

Based on the findings of the preliminary experiment of QHM-GAN in Section 4.1.4, it is evi-

dent that the QHM structure can be effectively integrated with neural networks to form a novel

framework for neural vocoders. Building upon this validation, we proceed to conduct compar-

ative evaluations between our proposed methods and other existing neural vocoders. Given the

rapid emergence of numerous neural vocoders in recent years, it becomes impractical to perform

exhaustive comparisons with all existing methods, particularly when subjective evaluations such
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Table 4.2: Results of objective and subjective evaluations for speech synthesis. The UTMOS values of the
ground truth samples for VCTK and JVS were 4.04 and 3.63, respectively.

Metric Dataset HiFi-GAN Vocos hn-NSF QHM-GAN QHARMA-GAN

V/UV rate [%] ↓
VCTK 11 11 11 13 11

JVS 11 9 9 14 9

f0 RMSE [Hz] ↓
VCTK 0.06 0.06 0.06 0.06 0.06

JVS 0.11 0.11 0.10 0.09 0.09

PESQ ↑
VCTK 3.14 3.15 2.91 3.00 3.14

JVS 3.29 3.42 3.23 3.29 3.26

MCD ↓
VCTK 3.61 3.62 4.21 4.14 4.09

JVS 3.6 3.45 3.91 4.08 4.00

UTMOS ↑
VCTK 3.91 3.89 3.76 3.50 3.76

JVS 3.16 3.25 3.21 3.15 3.30

as MOS tests are involved, which impose significant cognitive load on human raters.

To mitigate the burden on listeners while maintaining fairness and comprehensiveness in eval-

uation, a two-stage evaluation strategy is adopted. In the first stage, we rely solely on objective

metrics to preliminarily screen out the top-performing models from among all neural vocoders.

This allows us to identify the best-performing baseline from existing neural methods as well as

our most effective proposed model. In the second stage, we focus on a more detailed compari-

son involving subjective assessments, where the selected neural vocoders are compared against

conventional signal-processing-based methods, such as WORLD and QHM.

This subsection presents the results of the first-stage screening, where the objective perfor-

mance of all neural vocoders is evaluated on the VCTK and JVS datasets. The results are summa-

rized in Table 4.2. HiFi-GAN and Vocos show comparable performance, with minor differences

across metrics and datasets, whereas hn-NSF consistently underperforms in both mel-cepstral

distortion (MCD) and utterance-level mean opinion score (UTMOS), reflecting lower synthesis

quality from spectral and perceptual perspectives.

Among the proposed models, QHARMA-GAN achieves the best performance, attaining the

highest UTMOS on the JVS dataset while maintaining strong results across both corpora. Con-

sidering HiFi-GAN’s prevalence as a standard benchmark in recent literature and its performance

being close to Vocos, it is chosen as the representative baseline for subsequent comparisons with

QHARMA-GAN in the main synthesis evaluation.
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4.4.5 Evaluations of Synthesis Quality

According to the results discussed in the previous subsection, it is evident that HiFi-GAN serves as

an appropriate baseline among neural vocoders, while QHARMA-GAN consistently outperforms

QHM-GAN in various aspects. Building upon this foundation, we conduct a more comprehensive

evaluation in this subsection to investigate the synthesis performances of all methods, including

both conventional signal-processing-based methods and neural vocoders. In addition to widely

used objective metrics, we employ the Mean Opinion Score (MOS) to assess the perceptual quality

of the synthesized speech, offering a more holistic understanding of each method’s performance.

The results of the main experiment are summarized in Table 4.3, which includes both objective

and subjective evaluation metrics. From the objective standpoint, QHM achieves the best overall

performance, as evidenced by the highest PESQ score and the lowest f0 root mean square error

(RMSE). This superior performance is attributed to QHM’s ability to directly model the speech

waveform while adaptively correcting the frequency of each harmonic component. Consequently,

QHM excels at capturing complex amplitude structures and reconstructing speech waveforms with

high fidelity. However, QHM exhibits a relatively high voiced/unvoiced (V/UV) error rate, which

stems from its limited frequency correction range. When significant frequency mismatches are

present, QHM often requires multiple iterative refinements for accurate correction [73]. This issue

is particularly pronounced when analyzing unvoiced segments, where the corrected frequencies

may still exhibit harmonic-like patterns. These patterns can mislead pitch detectors into falsely

classifying unvoiced segments as voiced, thus increasing the V/UV error.

In contrast, HiFi-GAN demonstrates slightly lower PESQ scores compared to QHM but avoids

the iterative correction process. QHARMA-GAN, on the other hand, achieves the lowest V/UV

error among all evaluated methods, although it yields intermediate values in terms of PESQ and

f0 RMSE. This suggests that QHARMA-GAN strikes a balance between frequency modeling and

speech quality.

Turning to the subjective MOS results, QHARMA-GAN attains the highest MOS score, sur-

passing even the well-established QHM and HiFi-GAN. This outcome highlights the perceptual

superiority of QHARMA-GAN. One major reason for QHM’s lower MOS is its difficulty in ad-

justing frequency trajectories for unvoiced segments. The harmonic patterns in these segments

degrade the perceived naturalness of unvoiced speech. It is worth noting that the PESQ scores are

higher than those of other methods, which is inconsistent with the MOS values. This is caused

by that QHM methods not only model the magnitudes but also the phase, leading to an extremely

close waveform to the ground truth without phase delays, while the other methods only model

the magnitude, even though they can achieve higher-quality synthesis, reducing the PESQ scores.

While HiFi-GAN produces waveforms directly in the time domain, this method does not ensure

the frequency stability and continuity required for high-quality synthesis. As a result, some gen-

erated samples suffer from audible frequency distortions.
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Table 4.3: Results of objective and subjective evaluations. The MOS values of the ground truth samples for
VCTK and JVS datasets were 4.27±0.022 and 3.88±0.038, respectively.

Metric Dataset WORLD QHM HiFi-GAN QHARMA-GAN
QHARMA-GAN

-small

V/UV rate [%] ↓
VCTK 11 13 11 11 12

JVS 12 15 11 9 10

f0 RMSE [Hz] ↓
VCTK 0.06 0.03 0.06 0.06 0.06

JVS 0.11 0.05 0.11 0.09 0.09

PESQ ↑
VCTK 2.54 3.45 3.14 2.72 2.49

JVS 2.97 3.61 3.29 3.26 3.18

MOS ↑
VCTK 4.12±0.025 4.07±0.035 4.08±0.028 444...222111±±±000...000222555 4.10±0.054

JVS 3.67±0.042 3.40±0.047 3.64±0.030 333...888000±±±000...000222999 3.68±0.030

In contrast, QHARMA-GAN inherently ensures frequency smoothness and stability during

synthesis by leveraging the ARMA-based formulation. This leads to a significant reduction in

frequency-related distortions. Additionally, QHARMA-GAN is capable of adaptively modulating

the phase delay in unvoiced segments based on the mel-spectrogram input. This process intro-

duces a quasi-harmonic structure in these segments, which improves the perceived naturalness of

unvoiced speech. Notably, even the simplified variant, QHARMA-GAN-small, which employs a

more compact neural architecture, achieves a MOS score only marginally lower than that of the

full version. This finding further validates the effectiveness of the proposed hybrid framework

that combines interpretable signal modeling with neural generative capabilities.

4.4.6 Evaluations of Model Efficiency

According to the results presented in the previous subsection, both QHARMA-GAN and its sim-

plified variant (QHARMA-GAN-small) demonstrate synthesis quality that is comparable to, and

in certain cases superior to, state-of-the-art neural vocoders such as HiFi-GAN and Vocos. These

findings suggest that the proposed methods are competitive not only in perceptual and objective

metrics but also in robustness across datasets.

To further validate the practicality of the proposed models, this subsection evaluates the effi-

ciency of all candidate vocoders in terms of real-time factor (RTF). We separately compare the

QHM-GAN and QHARA-GAN with conventional vocoders (WORLD and QHM) and neural

vocoders (HiFi-GAN, Vocos, and hn-NSF). First, in Table 4.4, the RTF values for both analysis

and synthesis stages are reported, enabling a detailed comparison of computational performance

across different processes. Second, in Table 4.5, the RTFs of all neural vocoders are given.

For the first stage, to ensure a fair comparison between conventional methods, the time required

for f0 detection is excluded from the RTF computation for WORLD and QHM. This is because
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modern neural vocoders typically do not perform explicit f0 estimation during inference, and

including this step would create a bias against conventional methods due to its high computational

cost. Additionally, WORLD and QHM are fed by the speech waveform, whereas the neural

methods are fed by the mel-spectrogram. Thus, to further improve the fair comparison, the process

of calculating the mel-spectrogram from the speech waveform is included for all neural methods.

As shown in Table 4.4, QHM exhibits the highest analysis RTF among all methods, primarily

due to its frame-by-frame least-squares fitting, which incurs significant computational overhead.

Similarly, WORLD also exhibits relatively high analysis latency as a result of its frame-wise

spectral envelope estimation. On the contrary, QHM-GAN achieves a faster analysis RTF of

0.133, while QHARMA-GAN yields a slightly higher value of 0.139. Despite this, the simplified

structure of QHARMA-GAN-small leads to a noticeable reduction in analysis time, confirming

that architectural simplifications can effectively mitigate computational demands.

For the synthesis stage, QHARMA-GAN achieves a lower RTF (0.048) than conventional

vocoders such as WORLD and QHM. This improvement is largely due to the optimized synthesis

pipeline, in which frequency interpolation is omitted and replaced with direct phase interpolation,

thus reducing the computational complexity. However, QHM methods need to interpolate ampli-

tude and frequency at the first stage, and then conduct a special integration of the frequency, in a

frame-by-frame scheme, to obtain the instantaneous phase. That’s the main reason that the RTF

of synthesis for QHM methods is much higher than QHM-GAN and QHARMA-GAN. There-

fore, for the speech modeling task, such hybrid methods can efficiently and accurately extract the

parameters and synthesize the speech.

For the second stage, we focus on Table 4.5, which shows that Vocos achieves the lowest anal-

ysis RTF of 0.040, significantly outperforming both HiFi-GAN and hn-NSF. This efficiency can

be attributed to its streamlined architecture, which eliminates the use of transposed convolutions

and directly synthesizes complex spectrograms, which are subsequently converted to waveforms

via an efficient iSTFT module. Although QHM-GAN and QHARMA-GAN are slightly slower

than HiFi-GAN in synthesis speed, they remain significantly faster than hn-NSF. The higher syn-

thesis RTF of hn-NSF stems from its reliance on upsampled input sequences and the additional

computations introduced by its source excitation module.

It is also worth noting that while QHARMA-GAN benefits from improved analysis efficiency

by avoiding upsampling during analysis, it introduces additional synthesis overhead due to the

requirement of interpolating both instantaneous amplitude and phase. This trade-off is effectively

addressed by QHARMA-GAN-small, which simplifies the DNN architecture and accelerates the

overall inference pipeline. Further reductions in computational cost could potentially be achieved

by continuing to streamline the DNN architecture, especially in the analysis component.

In summary, QHARMA-GAN strikes a balance between synthesis quality and computational

efficiency, demonstrating that the proposed quasi-harmonic ARMA framework is not only ef-
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Table 4.4: RTF comparison with conventional methods computed on a single Intel Xeon Gold 6230.

RTF ↓ Analysis Synthesis Overall

WORLD 0.727 0.406 1.133

QHM 23.246 1.118 24.364

QHM-GAN 0.133 0.045 0.180

QHARMA-GAN 0.139 0.048 0.187

QHARMA-GAN-small 0.034 0.049 0.084

Table 4.5: RTF comparison with neural methods computed on a single Intel Xeon Gold 6230.

Methods HiFi-GAN Vocos hn-NSF QHM-GAN QHARMA-GAN QHARMA-GAN-small

RTF ↓ 0.153 0.040 0.192 0.179 0.187 0.084

fective but also practical for real-world applications where latency and throughput are critical

considerations.

4.4.7 Evaluations of Generalization Ability

The generalization capability of neural vocoders is a critical aspect for their practical deployment.

Most neural vocoders, including HiFi-GAN, tend to be data-hungry, requiring large amounts of

training data to prevent overfitting. To evaluate the generalization ability of various vocoders, we

conduct two sets of experiments: out-of-distribution (OOD) evaluation and few-shot learning.

Out-of-Distribution Evaluation

In the OOD setting, the generalization of vocoders trained on the JVS corpus (Japanese speech)

is evaluated using a distinct task: singing voice synthesis. Singing samples are taken from the

OpenSinger dataset [100], with songs in Mandarin and Cantonese sung by male and female vocal-

ists. To ensure gender and linguistic diversity, 20 songs comprising 727 utterances were randomly

selected for evaluation.

Table 4.6 summarizes the objective evaluation results. Among all models, QHARMA-GAN

achieves the best performance in most metrics, particularly in f0 RMSE and UTMOS, indicating

superior pitch stability and perceptual quality. Although Vocos achieves slightly better PESQ and

MCD scores, its notably higher f0 RMSE suggests instability in pitch trajectory. UTMOS values

further confirm that Vocos and HiFi-GAN often suffer from frequency jitter and phase disconti-

nuities, resulting in unnatural synthesized singing voices. This issue is especially pronounced in

high-frequency regions.
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Table 4.6: Results of objective evaluations for OOD evaluation. The UTMOS value of the ground truth was
2.42.

Metric HiFi-GAN Vocos hn-NSF QHM-GAN QHARMA-GAN

V/UV rate [%] ↓ 8 7 8 8 7

f0 RMSE [Hz] ↓ 0.16 0.28 0.16 0.11 0.11

PESQ ↑ 2.54 3.02 2.68 2.87 2.94

MCD ↓ 6.42 5.78 6.44 6.80 5.96

UTMOS ↑ 1.99 2.04 2.05 2.00 2.20

hn-NSF benefits from the explicit use of f0 as a prior and exhibits more stable pitch patterns than

HiFi-GAN and Vocos. However, it still struggles to model accurate f0s and spectral envelopes,

particularly in singing voices with extreme pitch values. In contrast, QHM-GAN and QHARMA-

GAN adopt an interpolation-based instantaneous phase reconstruction strategy, enabling them

to produce smooth and continuous frequency trajectories. The use of cubic interpolation helps

mitigate phase discontinuities caused by phase compensations or ARMA phase delay adjustments,

thereby preserving the naturalness of synthesized audio.

Notably, HiFi-GAN, Vocos, and hn-NSF all show poor performance on soprano voices with

extremely high f0 values due to the absence of such pitch ranges in the training data. While

hn-NSF includes pitch priors, its inability to capture fine-grained resonance characteristics limits

its performance in such cases. Same limitation happens in QHM-GAN, since QHM-GAN can-

not fully get rid of the black-box nature, particularly in terms of the spectral envelope modeling.

Thus, once the f0 is outside the training distribution, the synthesis quality degrades. In contrast,

QHARMA-GAN, leveraging the QHM-based architecture, effectively generalizes to these chal-

lenging scenarios, preserving harmonic structures and producing stable output even under pitch

conditions far from the training distribution.

To visually support this observation, Fig. 4.7 displays the spectrograms of a soprano utterance

synthesized by different methods. HiFi-GAN, Vocos, and hn-NSF only reproduce low-frequency

harmonics and fail to generate high-frequency components, resulting in audible distortions. On

the other hand, the inaccurate estimation of amplitudes and phase compensations in QHM-GAN

gives rise to artifacts similar to aliasing, ultimately distorting the perceived quality of the synthe-

sized singing voice, especially in the latter part of the spectrogram. In contrast, QHARMA-GAN

generates harmonics across the full frequency range, with smooth frequency curves that reflect

higher naturalness and pitch fidelity.
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Figure 4.7: The spectrograms of the soprano voice generated by (a) ground truth (b) HiFi-GAN, (c) Vocos,
(d) hn-NSF, (e) QHM-GAN, and (f) QHARMA-GAN.

Few-Shot Learning

We further assess the few-shot learning ability by training HiFi-GAN and QHARMA-GAN on

a limited subset of the LJSpeech dataset. Specifically, 1419 utterances are split into training /
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Table 4.7: Results of objective and subjective evaluations of small LJSpeech. The MOS of the ground truth
samples was 3.96±0.018.

Metric WORLD QHM HiFi-GAN QHARMA-GAN QHARMA-GAN-small

V/UV rate [%] ↓ 11 10 9 9 9

f0 RMSE [Hz] ↓ 0.14 0.08 0.12 0.09 0.09

PESQ ↑ 2.64 3.63 3.13 3.18 3.18

MOS ↑ 3.63±0.020 3.86±0.029 3.53±0.016 3.85±0.024 3.90±0.022

validation / test sets with a 919 / 250 / 250 ratio. Table 4.7 presents the evaluation results under

this low-resource setting.

Among all methods, QHM yields the best performance in most objective metrics, benefit-

ing from its direct waveform modeling and adaptive frequency correction. However, its V/UV

rate remains higher, as it lacks explicit mechanisms to model unvoiced segments. In contrast,

QHARMA-GAN and HiFi-GAN achieve the lowest V/UV rates due to their superior ability to

capture unvoiced speech characteristics.

Despite using a small training set, QHARMA-GAN achieves a MOS score comparable to

QHM, while QHARMA-GAN-small even slightly outperforms all methods in subjective qual-

ity. HiFi-GAN, on the other hand, exhibits the worst performance in both objective and subjective

measures, largely due to overfitting caused by insufficient training data, which leads to frequency

distortions and unnatural prosody.

These results indicate that QHARMA-GAN possesses strong generalization capabilities un-

der data-scarce conditions. The hybrid design combining DNNs with the interpretable quasi-

harmonic model effectively reduces the dependency on large training corpora. Human auditory

perception is highly sensitive to frequency discontinuities, and any instability can significantly

degrade speech quality. QHARMA-GAN’s use of sine-based synthesis ensures inherently smooth

frequency trajectories. Although the phase delays introduced by the ARMA structure may disrupt

phase continuity, the subsequent cubic interpolation step ensures continuity in both phase and

frequency, yielding natural and stable synthesized speech.

4.5 Summary

In this chapter, we proposed a novel hybrid neural vocoder framework, QHARMA-GAN, to ad-

dress the limitations of conventional CSP-based vocoders, such as poor robustness and low syn-

thesis quality, as well as the instability of f0 control in existing neural vocoders. The proposed

QHARMA-GAN bridges deep neural networks (DNNs) and quasi-harmonic modeling (CSP) via

ARMA-based resonance characteristic modeling.
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QHARMA-GAN comprises two components: a DNN module that estimates ARMA coeffi-

cients to capture resonance structures, and a CSP module that synthesizes or modifies speech

based on these coefficients. First, the robustness of DNNs is utilized to alleviate the quality degra-

dation resulting from the limited resonance modeling in conventional CSP algorithms. Second, we

introduce a novel CSP-based synthesis algorithm that efficiently reconstructs speech waveforms

by interpolating only amplitude and phase, enabling fast and high-fidelity synthesis.

By integrating the strengths of both DNNs and CSP, QHARMA-GAN effectively exploits the

quasi-harmonic structure of speech to support high-quality synthesis and flexible parameter ma-

nipulation without sacrificing stability. Experimental results demonstrate that QHARMA-GAN

produces speech with smoother frequency trajectories than HiFi-GAN. Furthermore, the model

achieves competitive computational efficiency due to its non-upsampling architecture and sim-

plified DNN structure, supporting real-time processing and making it suitable for deployment in

tasks such as text-to-speech (TTS) and voice conversion.

Notably, unlike mel-spectrogram-based vocoders, QHARMA-GAN requires an additional f0

prediction module when applied in TTS systems. Nonetheless, the proposed framework offers

improved interpretability and controllability, making it a promising candidate for applications

involving emotional TTS and prosody editing in future research.
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Chapter 5

Speech Modification in
Quasi-Harmonic Framework

5.1 Introduction

After extracting the quasi-harmonic parameters, the speech signal cannot only be accurately resyn-

thesized, but also flexibly modified in terms of both pitch and duration. Speech modification plays

a critical role in various speech processing applications, such as voice conversion, prosody editing,

emotional speech synthesis, and singing voice manipulation. This chapter delves into the funda-

mental concepts and practical implementations of pitch-scaling and time-scaling, emphasizing

their role within quasi-harmonic modeling frameworks.

Conventional vocoder-based methods often suffer from artifacts and loss of naturalness due to

inaccurate modeling of phase or spectral fine structure during modification. In contrast, quasi-

harmonic modeling provides a more interpretable and structured representation of speech signals

by explicitly modeling amplitude and phase trajectories of harmonic components. This makes it

particularly well-suited for high-quality and precise speech modification.

In the following sections, we first introduce the definition of speech modification and the corre-

sponding applications in the real world, including time-scale modification and pitch-scale modifi-

cation. Secondly, we provide detailed implementation strategies for the methods within the QHM

frameworks, including conventional QHM methods, QHM-GAN, and QHARMA-GAN. We also

discuss the advantages and limitations of each method under different application scenarios, such

as extreme pitch shifts, tempo changes, and cross-lingual voice adaptation. Finally, we present a

comprehensive evaluation of these methods through both objective metrics (e.g., pitch accuracy,

spectral distortion) and subjective listening tests (e.g., naturalness, intelligibility). The results

confirm that quasi-harmonic modeling not only supports high-quality speech synthesis but also

enables flexible and interpretable modification capabilities, making it a promising framework for

controllable speech generation in modern speech processing systems.
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5.2 Speech Modification

Speech modification refers to the process of altering the f0 or the duration of a speech sig-

nal while preserving its short-time spectral envelope characteristics, commonly known as reso-

nance characteristics or timbre. These modifications are essential for various speech applications,

such as prosody adjustment in TTS, expressive speech synthesis, singing voice transformation,

and speaker identity preservation during voice conversion. Within the quasi-harmonic modeling

framework, speech is represented in terms of amplitude, frequency, and phase trajectories of har-

monic components, which provides a powerful and interpretable basis for performing high-quality

pitch and time modifications.

Two primary types of speech modification are considered in this context: time-scale modifi-

cation and pitch-scale modification, both of which are intrinsically linked to the quasi-harmonic

parameters.

5.2.1 Time-scale Speech Modification

Time-scale modification refers to the adjustment of speech duration without altering its per-

ceived pitch or timbral characteristics. Within the quasi-harmonic modeling framework, this

is accomplished by manipulating the temporal alignment of framewise quasi-harmonic param-

eters, namely, the amplitude and phase trajectories, via interpolation according to a modified

frame-shift schedule. For instance, decreasing the frame-shift yields a compressed (faster) signal,

whereas increasing the frame-shift results in an expanded (slower) signal. Because the instanta-

neous frequency trajectories remain unchanged, the harmonic structure and spectral envelope are

preserved, ensuring prosody adjustment while maintaining formant structure and speaker iden-

tity. Thus, QHM allows time-scaling to be executed without introducing typical artifacts such as

spectral smearing, pitch fluctuation, or prosodic discontinuities.

5.2.2 Pitch-scale Speech Modification

Pitch-scale modification, on the other hand, involves altering the f0 contour of speech, thereby

changing the spacing and absolute positions of harmonic components. Unlike time-scaling, pitch-

scaling directly impacts the alignment between harmonic frequencies and the spectral envelope,

which, if not handled properly, can lead to unnatural timbre, aliasing, or even a loss of speaker

identity, since the spectral envelope contains both speech and speaker information. To address this,

the QHM framework incorporates explicit modeling of resonance characteristics, typically repre-

sented by a smooth spectral envelope or an all-pole filter. This allows the system to re-estimate the

amplitude and phase of each harmonic component based on its new frequency location under the

modified f0 trajectory. Furthermore, smoothness in both amplitude and phase trajectories is main-

tained through interpolation, which is critical for avoiding phase discontinuities and preserving
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the naturalness of the synthesized speech.

In summary, the QHM framework offers a principled and interpretable approach for high-

fidelity speech modification. Time-scaling is realized through temporal interpolation of quasi-

harmonic parameters, while pitch-scaling resynthesizes the harmonic structure guided by the pre-

served spectral envelope, enabling flexible and high-quality control over speech attributes.

5.3 Core Principles and Implementation Strategies

After establishing the fundamental concepts and objectives of speech modification, we now pro-

ceed to describe the core principles and implementation strategies in detail.

Based on how the modification is carried out, speech modification methods based on QHM can

be generally divided into two categories:

1. Post-modification using extracted quasi-harmonic parameters:

In this approach, the quasi-harmonic parameters (i.e., amplitudes, frequencies, and phases)

are first extracted from the original speech signal. These parameters are then manually

or algorithmically modified to achieve the desired pitch or duration changes. For example,

time-scaling can be realized by stretching or compressing the temporal axis of the amplitude

and phase trajectories, while pitch-scaling can be achieved by proportionally shifting the

harmonic frequencies and adjusting phases and amplitudes to maintain continuity and the

spectral envelope. The modified parameters are then used to resynthesize the speech signal.

This method provides fine-grained control and interpretability but may require additional

signal processing (e.g., LPC) to avoid distortion.

2. Direct generation of modified speech via neural networks:

This approach utilizes neural networks to directly estimate the quasi-harmonic parameters

that correspond to the target pitch or time scale. In other words, instead of first extracting

and then modifying, the neural model is conditioned on the desired modification parameters

(e.g., target pitch contour or duration factor) and learns to generate the corresponding am-

plitude and phase patterns. This enables an end-to-end pipeline for speech modification and

is particularly suitable for real-time or highly variable applications. However, this method

relies on the generalization capability of the neural model and may require more data for

training or fine-tuning under different conditions.

Obviously, “Post-modification based on extracted quasi-harmonic parameters” corresponds to

the conventional QHM methods, since they are only able to extract the parameters for the orig-

inal speech signal and need the manual manipulation of the QHM parameters, where “Neural
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Figure 5.1: The rotation in speech modification.

network-based direct modification” corresponds to the neural methods, namely QHM-GAN and

QHARMA-GAN, since they are trained by a large amount of data, encompassing various types

of speech signals, and they can directly estimate the QHM parameters for modified speech.

In the subsequent sections, we first give the principle of the speech modification in the QHM

framework. According to the ways of modification, we second elaborate on the implementation

details of each approach, highlighting their respective advantages, technical challenges, and ap-

plicable scenarios.

5.3.1 Core Principles of Speech Modification

The core principle of time-scale and pitch-scale modification in the QHM framework lies in ad-

justing the rotation angle of all components’ phase across frames. Specifically, both types of

modification can be interpreted as controlled changes to the phase increment, i.e., the angular

displacement, of all components between adjacent frames. At the same time, the spectral shapes

must remain fixed and smooth across frames.

Taking the pitch component as an example, Fig. 5.1 schematically illustrates its rotation behav-

ior during speech modification. Here, ϕ0(tl) denotes the phase at the center of the l-th frame. The

phase at the next frame, ϕ0(tl+1), reflects the original phase increment and is visualized as a solid
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arc.

For time-scale modification, changing the frame-shift alters the phase rotation. For example,

halving the frame-shift halves the phase increment between frames. This scenario is illustrated

by ϕ̃0(t̃l+1) in the figure, where the phase increment is reduced accordingly. Importantly, the

instantaneous frequency remains the same, but the duration shortens. In such a shorter duration,

the original sentence is compressed, thus it sounds like the speech is accelerated.

Conversely, in pitch-scale modification, the frame-shift remains fixed, but the instantaneous

frequency is scaled (e.g., doubled), leading to a proportional increase in the phase increment per

frame. This is illustrated by ϕ̃0(tl+1) in the figure, where the phase rotation angle is doubled due

to the doubled frequency.

Thus, both modifications can be uniformly described as adjustments to the inter-frame phase

increment of each component. Maintaining consistent relative positions across harmonics pre-

serves the spectral envelope during modification. This phase-centric view provides a compact

and effective basis for high-quality speech modification in the QHM framework. In the follow-

ing sections, we detail the ways of QHM methods and our proposed extensions (QHM-GAN and

QHARMA-GAN) to maintain the spectral shapes, respectively.

5.3.2 Post-Modification of Parameters for QHM Methods

In this approach, speech parameters (i.e., framewise amplitudes, frequencies, and phases) are

first extracted by QHM methods from the original signal. Based on them, new parameters are

estimated for the modified speech, and finally, resynthesis is performed to achieve time- or pitch-

scaling. Since preserving the spectral shape requires phase consistency, QHM first modifies the

pitch component’s phase and then derives the phases of higher harmonics to maintain harmonic

coherence and the spectral envelope. This provides fine-grained control with high fidelity and

minimal distortion, as illustrated in Fig. 5.2. Next, techniques for phase re-adjustment are intro-

duced.

Time-scale Modification

For time-scale modification, to preserve the spectral envelope, the waveform shape must remain

unchanged. This requires interpolation of instantaneous parameters when rescaling harmonically

related sinusoids. Instantaneous amplitudes and frequencies can be interpolated directly, typically

using linear or spline methods. In contrast, phase interpolation is more challenging because phase

naturally rotates with time across analysis frames and is sensitive to frequency estimation errors.

To address this issue, the concept of relative phase [101, 39] is introduced. By subtracting the

integral of k f0 from the phase (where k is the harmonic index and f0 the fundamental frequency),

the rotational component is removed, and the effect of frequency estimation errors is mitigated.

As a result, the relative phase varies smoothly across consecutive frames, assuming the signal
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Figure 5.2: The workflow of the speech modification with a post-modification strategy.

evolves smoothly over time.

Once the relative phase is obtained, it can be interpolated to form a continuous trajectory. To

ensure that the derivative (instantaneous frequency) is also smooth, higher-order interpolation

schemes such as spline or cubic interpolation are required. This preserves the waveform shape

under time-scaling, enabling shape-invariant synthesis.

Relative Phase Here, we present the theoretical foundation of the relative phase, which is essen-

tial for ensuring waveform consistency under time or pitch modifications. Consider a harmonic

signal within the l-th frame. The fundamental (pitch) component can be represented as

x0(t) = ei
[
2π
∫ tl+t
tl

f0(u)du+θ0

]
, (5.1)

where θ0 denotes the initial phase of the pitch component at the beginning of the l-th frame. This

value can also be interpreted as the phase at the end of the preceding frame, i.e., the (l− 1)-th

frame.

Similarly, the k-th harmonic component is expressed as

xk(t) = ei
[
2πk

∫ tl+t
tl

f0(u)du+θk

]
, k ∈ Z+, (5.2)

where fk = k f0 is assumed and θk denotes the initial phase of the k-th harmonic component.

Accordingly, the instantaneous phases of the pitch and the k-th harmonic components are, respec-

tively, given by

ϕ0(t) = 2π

∫ tl+t

tl
f0(u)du+θ0, (5.3)

ϕk(t) = 2πk
∫ tl+t

tl
f0(u)du+θk. (5.4)
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Assuming θ0 = 0 without loss of generality, we can subtract k times the pitch phase from the

k-th component’s phase to obtain

θk = ϕk(t)− kϕ0(t), (5.5)

which reveals a fundamental property: the initial phase of the k-th harmonic can be determined by

its instantaneous phase and that of the pitch component. This formulation ensures that, regardless

of how the pitch phase θ0 evolves across frames, the waveform shape within each frame can be

preserved by adjusting θk accordingly. Therefore, θk (when θ0 = 0) or, more generally, θk −
kθ0 defines the relative phase of the k-th harmonic component, which is critical for maintaining

harmonic phase coherence.

When performing time- or pitch-scale modifications, it is often necessary to redefine the time

axis. Let t̃l denote the scaled center time of the l-th frame, and let t̃ represent a local time variable

relative to t̃l . The instantaneous phase of the pitch component in the scaled time domain is given

by

ϕ̃0(t̃) = 2π

∫ t̃l+t̃

t̃l
f̃0(u)du, (5.6)

and accordingly, the phase of the k-th harmonic becomes

ϕ̃k(t̃) = θk +2πk
∫ t̃l+t̃

t̃l
f̃0(u)du. (5.7)

It is important to note that this formulation remains valid even when k is not an integer, which is

essential for representing non-integer harmonics or frequency components during fine-scale pitch

manipulation.

In summary, the use of relative phase allows for consistent reconstruction of harmonic com-

ponents regardless of time or pitch modifications. By anchoring the harmonic phases relative

to the pitch component, waveform coherence is preserved across frames, enabling natural and

artifact-free speech synthesis and transformation.

Pitch-scale Modification

For the time-scale modification, it is easy to use the relative phase to keep the waveform shape in-

variant. However, when the modification involves rapid changes in frequency components (e.g., in

pitch-scale modification), the approach can suffer from phase dispersion, where the relative phase

relationships among harmonic components are altered. This occurs because simply preserving

frequency magnitudes is insufficient to maintain the waveform shape; fine phase alignment be-

tween harmonics must also be preserved for perceptually natural reconstruction. To mitigate this

issue, the phase delay method has been proposed [102].
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Relative Phase Delay The phase delay of the k-th component in the l-th frame can be defined as

τ
l
k =

ϕk(tl)
ωk(tl)

=
ϕk(tl)

2π fk(tl)
, (5.8)

where ϕk(tl) denotes the instantaneous phase of the k-th component at the frame center tl . This

quantity represents the temporal shift required to reach the current phase, essentially indicating

the alignment of the sinusoid within the frame.

To preserve the waveform shape, it is important to maintain the relative alignment among com-

ponents. Thus, the relative phase delay is introduced as the difference between the phase delays

of the k-th component and the fundamental component (pitch), expressed as

∆τ
l
k = τ

l
k− τ

l
0. (5.9)

This value reflects the time lag of the k-th harmonic component relative to the pitch component.

Once the phase delay of the pitch component is known, the phase delay of any other harmonic

component can be computed using its relative delay.

In the case of time- or pitch-scaled speech, we denote the scaled phase delay as τ̃ l
k, and assume

that the relative delay remains invariant:

∆τ
l
k = ∆τ̃

l
k

τ
l
k− τ

l
0 = τ̃

l
k− τ̃

l
0

ϕ̃k(tl) =
(

τ̃
l
0 +
(

τ
l
k− τ

l
0

))
·2π fk(tl). (5.10)

Therefore, once the phase delay of the pitch component is determined in the scaled signal, the

absolute phase of all harmonic components can be calculated by preserving their relative phase

delays. This strategy ensures coherent phase alignment across harmonics, effectively preventing

phase dispersion and preserving waveform fidelity under time and pitch modifications.

Apart from the estimation of phase, the amplitude of each harmonic component also plays a

crucial role in pitch-scale modification. Unlike time-scale modification, where the framewise

amplitudes can be retained to preserve the spectral envelope, pitch-scaling alters the frequencies

of all components. As a result, using the original amplitudes at the shifted frequencies may distort

the spectral envelope, especially when the pitch shift is large. This leads to timbral inconsistencies

and a loss of speaker identity in the synthesized speech.

To address this issue, the spectral envelope must be re-estimated to adaptively determine the

amplitudes at the new harmonic positions. However, sinusoidal models alone are insufficient for

modeling the smooth spectral envelope due to their discrete and component-wise nature. There-

fore, additional estimation methods, such as linear predictive coding (LPC) [54] or discrete all-

pole (DAP) [94] modeling, are employed to represent the spectral envelope as a continuous func-

tion over frequency.
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Figure 5.3: The workflow of the speech modification with neural-based methods.

Using these techniques, the amplitude Ãk(tl) of the k-th component in the l-th frame, after

pitch-scaling, is computed by evaluating the spectral envelope at the scaled frequency:

Ãk(tl) = fDAP(tl,ρl fk), (5.11)

where ρl is the pitch-scale factor for the l-th frame, and fk is the original frequency of the k-th

component. Here, fDAP(·, ·) denotes the spectral envelope estimation process by discrete all-pole

at a specific time and frequency.

This strategy ensures that the amplitude distribution across frequencies remains consistent with

the original spectral shape, thereby maintaining the timbral characteristics of the speech signal

after pitch transformation. Combined with relative phase delay alignment, this amplitude correc-

tion forms a complete and coherent approach to high-quality pitch-scale modification within the

quasi-harmonic modeling framework.

5.3.3 Neural Network-based Modification for QHM-GAN and QHARMA-GAN

Neural vocoders such as QHM-GAN and QHARMA-GAN can be trained to predict quasi-harmonic

parameters for a target modification (e.g., pitch or speaking rate). Instead of manually modifying

extracted parameters, the network learns a mapping from input features (e.g., mel-spectrograms

and f0) to modified quasi-harmonic parameters. This enables end-to-end generation of modified

speech without additional techniques like relative phase or relative phase delay. The workflow is

illustrated in Fig. 5.3.

Time-scale Modification

A straightforward strategy is to interpolate mel-spectrograms and feed them to the network. Al-

though effective, this increases computation for long utterances and introduces interpolation errors

that cannot be corrected by the black-box model.

Fortunately, vocoders with quasi-harmonic modeling architectures, such as QHM-GAN and
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QHARMA-GAN, generate waveforms from interpretable parameters, namely the framewise am-

plitudes and phases of quasi-harmonics. This structure naturally enables a more efficient and

controllable time-scale modification. Instead of interpolating neural network inputs, we adopt a

QHM-style parametric approach: the network first estimates frame-level amplitudes and phases

from the mel-spectrogram under the original frame alignment, after which these parameters are

temporally interpolated according to a modified frame-shift schedule, yielding amplitude and

phase trajectories consistent with the new temporal structure.

This strategy reduces computational complexity during inference by decoupling the time-scaling

operation from the network and applying it directly in the parameter space. Since interpolation

operates on smooth, low-dimensional quasi-harmonic parameters rather than high-dimensional

acoustic features, the generated speech maintains fidelity and avoids artifacts common in time-

domain resampling. In contrast, interpolating mel-spectrograms depends on the black-box in-

ference of the neural network, leading to inevitable errors that cannot be corrected. Parameter-

space interpolation, however, is more direct and accurate, producing higher-quality scaled speech.

Therefore, in this thesis, time-scale modification for QHM-GAN and QHARMA-GAN is imple-

mented based on modifying the output parameters estimated by the DNN.

Pitch-scale Modification

For pitch-scale modification, the neural method strategy is conceptually similar to time-scale mod-

ification but differs due to the nature of pitch alteration. Unlike post-modification methods, which

require spectral envelope re-estimation and phase adjustment, neural vocoders can directly esti-

mate the spectral envelope from the input, simplifying the pipeline.

In vocoders with quasi-harmonic modeling, such as QHM-GAN, the input includes a mel-

spectrogram and an f0 contour. Pitch-scaling is achieved by scaling the f0 trajectory to a target

contour, which is fed into the network along with the original mel-spectrogram. The network then

directly estimates the quasi-harmonic parameters, i.e., framewise amplitudes and phase correction

terms, corresponding to the desired pitch-modified speech.

The scaled speech waveform is reconstructed using the sinusoidal synthesis engine of QHM-

GAN, eliminating explicit post-processing steps such as harmonic re-alignment or amplitude com-

pensation, as these are implicitly learned. Embedding pitch modification within the inference

pipeline ensures efficiency, controllability, and high-quality output without noticeable artifacts.

This approach is especially advantageous for large-scale speech synthesis or voice conversion

systems, where interpretability and efficiency are important. Moreover, the quasi-harmonic struc-

ture preserves the resonance characteristics, maintaining the perceptual identity and timbral qual-

ity of the speaker even under substantial pitch scaling.
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5.4 Speech Modification Algorithms

In this section, we elaborate on the specific algorithms used to achieve time-scale and pitch-scale

modifications within the quasi-harmonic modeling framework: conventional post-modification

and neural vocoder-based approaches.

First, the post-modification strategy for conventional QHM methods directly operates on the

extracted amplitudes and phases of harmonic components, enabling interpretable and controllable

modifications but often requiring additional modeling of spectral characteristics for accurate pitch

manipulation.

Second, in contrast, neural vocoder-based approaches (e.g., QHM-GAN and QHARMA-GAN)

estimate the quasi-harmonic parameters of the modified speech directly from scaled inputs such

as mel-spectrograms and modified f0. These methods provide a unified, data-driven framework

that is efficient and effective for large-scale or real-time applications, though with reduced trans-

parency compared to parametric methods.

The following subsections discuss the implementation details, interpolation mechanisms, and

phase-handling techniques of the two strategies, highlighting their relative advantages and suitable

use cases.

5.4.1 Speech Modification based on QHM Methods

In this subsection, we focus on the modification for on the QHM methods, primarily following

[3]. These methods rely on extracting frame-wise quasi-harmonic parameters, i.e., amplitude,

frequency, and phase, from the original speech. Speech modification is then achieved by adjusting

these parameters and resynthesizing the signal. We particularly emphasize the estimation process

of the modified parameters, which is crucial for achieving high-quality synthesis results under

time-scale or pitch-scale transformations for QHM methods.

Time-scale Modification

As described in Section 5.3.2, for time-scale modification, the pitch contour is expected to be

stretched or compressed temporally, while the formant structure is modified at a proportionally

adjusted rate. Let tl represent the time instant at the l-th frame of the original signal, and let βl

denote the time-scaling factor at that frame. The corresponding scaled time t̃l is calculated by

t̃l =
l

∑
i=1

βi(ti− ti−1), (5.12)

where t̃0 = 0 is defined as the starting time of the scaled signal. A time-scaling factor βl > 1

increases the duration of the signal, while βl < 1 shortens it.

Let Âk(t), f̂k(t), and ϕ̂k(t) represent the instantaneous amplitude, frequency, and phase of the

k-th component in the original quasi-harmonic signal. The corresponding parameters for the time-
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scaled signal are denoted by Ãk(t̃), f̃k(t̃), and ϕ̃k(t̃), respectively. The time-scaled speech signal

can thus be expressed as

x̃(t̃) =
K

∑
k=−K

Ãk(t̃)eiϕ̃k(t̃). (5.13)

To obtain the time-scaled waveform, the following steps are performed:

1. Amplitude adjustment: The framewise amplitudes are directly mapped from the original

to the scaled time instants:

Ãk(t̃l) = Âk(tl). (5.14)

2. Frequency adjustment: The instantaneous frequencies are similarly mapped:

f̃k(t̃l) = f̂k(tl). (5.15)

3. Pitch phase rescaling: The phase of the fundamental component (k = 0) is adjusted using

the scaling factor:

ϕ̃0(t̃l) = ϕ̃0(t̃l−1)+βl [ϕ̂0(tl)− ϕ̂0(tl−1)] . (5.16)

4. Relative phase reconstruction: The relative phase θk of each component is first obtained

from Eq. (5.5), and the full phase at each scaled frame is reconstructed as

ϕ̃k(t̃l) = θk + kϕ̃0(t̃l). (5.17)

5. Instantaneous phase computation: The instantaneous phase at an arbitrary time t̃ is ob-

tained by integrating the instantaneous frequency:

ϕ̃k(t̃) = ϕ̃k(t̃l)+
∫ t̃l+t

t̃l

[
2π f̃k(u)+ c(u)

]
du, (5.18)

where f̃k(t̃) is the interpolated frequency using a cubic spline, and c(t̃) is a compensation

term ensuring smooth phase transitions. It is defined by

c(t̃) = zsin
(

π(t̃− t̃l−1)

t̃l− t̃l−1

)
, (5.19)

which follows the same form as that used in Eq. (2.30).

6. Final synthesis: The complete time-scaled speech signal x̃(t̃) is synthesized by substituting

the interpolated amplitudes and computed phases into Eq. (5.13).
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Figure 5.4: The waveforms of ground truth and time-scaled speech based on QHM methods.

To illustrate the workflow more specifically, a pseudocode is given in Algorithm 4. Addition-

ally, an example of time-scale speech modification based on QHM methods is illustrated in Fig.

5.4, where the corresponding spectrograms are demonstrated in Fig. 5.5.

Algorithm 4 Time-scale speech modification based on QHM methods.

Step 1: Preprocessing and Setting
Extract the framewise parameters, including amplitudes Âk(tl), frequencies f̂k(tl), and phase ϕ̂k(tl), from
speech x(t) by QHM methods;
Step 2: Parameters modification
Scale the time instant by Eq. (5.12);
Adjust the amplitudes of all components by Eq. (5.14);
Adjust the frequencies of all components by Eq. (5.15);
Scale the phase difference of pitch components by Eq. (5.16);
Calculate the relative phase of all components by Eq. (5.5);
Calculate the phase of all components for scaled speech by Eq. (5.17);
Linearly interpolate Ãk(t̃l) into Ãk(t̃);
Cubically interpolate f̃k(t̃l) into f̃k(t̃);
Calculate the instantaneous phase ϕ̃k(t̃l) by Eq. (5.18);
Step 3: Generation
x̃(t̃)← ∑

K
k=−K Ãk(t̃)eiϕ̃k(t̃);

Output: x̂(t)
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Figure 5.5: The spectrograms of ground truth and time-scaled speech based on QHM methods.

Pitch-scale Modification

As described in Section 5.3.2, in pitch-scale modification, the f0 and its harmonics are scaled

by a pitch factor, requiring accurate amplitude and phase estimation to avoid distortions. To this

end, amplitude estimation is performed using the discrete all-pole (DAP) method, and the relative

phase delay is applied to preserve coherent harmonic alignment.

Likewise, the parameters of quasi-harmonics for original speech are denoted as Âk(t), f̂k(t), and

ϕ̂k(t), respectively, whereas those for pitch-scaled speech are denoted as Ãk(t), f̃k(t), and ϕ̃k(t),

respectively. Denoting the pitch-scale factor of the l-th frame as ρl , it can be known that the pitch

increases when ρl > 1, where the opposite happens when ρl < 1. The workflow of pitch-scale

modification will be demonstrated in the following part.

1. Frequency modification: The frequency will be modified by

f̃k(tl) = ρl f̂k(tl) (5.20)

2. Amplitude estimation: The amplitudes of all components will be estimated by DAP with
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their shifted frequencies:

Ãk(tl) = fDAP(tl, f̃k(t)), (5.21)

3. Pitch phase rescaling: The phase of the fundamental component (k = 0) will be modified

by

ϕ̃0(tl) = ϕ̃0(tl−1)+ρl [ϕ̂0(tl)− ϕ̂0(tl−1)] . (5.22)

4. Phase reconstruction with relative phase delay: The relative phase delay of each compo-

nent τ̂ l
k is first obtained from Eq. (5.8), where the relative phase delay of the fundamental

component for scaled speech τ̃ l
0 is also computed. The phase at each frame for pitch-scaled

speech is reconstructed as

ϕ̃k(tl) =
[
τ̃

l
0 +
(

τ̂
l
k− τ̂

l
0

)]
2π f̃k(tl). (5.23)

5. Instantaneous phase computation: The instantaneous phases of all components are ob-

tained by integrating the instantaneous frequencies:

ϕ̃k(t) = ϕ̃k(tl)+
∫ tl+t

tl

[
2π f̃k(u)+ c(u)

]
du, (5.24)

where f̃k(t) is the interpolated frequency using a cubic spline, and c(t) is a compensation

term ensuring smooth phase transitions, as used in Eq. (2.30).

6. Final synthesis: The complete time-scaled speech signal x̃(t) is synthesized by

x̃(t) =
K

∑
k=−K

Ãk(t)eiϕ̃k(t) (5.25)

To illustrate the process of pitch-scale more specifically, a pseudocode is given in Algorithm 5.

Additionally, an example of pitch-scale speech modification based on QHM methods is illustrated

in Fig. 5.6, where the corresponding spectrograms are demonstrated in Fig. 5.7.

5.4.2 Speech Modification based on QHM-GAN and QHARMA-GAN

Second, we consider modification based on neural vocoders, specifically QHM-GAN and QHARMA-

GAN. These models directly estimate quasi-harmonic parameters (amplitude, frequency, and

phase) of modified speech from scaled inputs such as f0 and mel-spectrogram, leveraging train-

ing data to achieve robust and efficient parameter estimation compared to conventional meth-

ods. Given their distinct synthesis processes, the modification algorithms for QHM-GAN and

QHARMA-GAN are introduced separately.
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Algorithm 5 Pitch-scale speech modification based on QHM methods.

Step 1: Preprocessing and Setting
Extract the framewise parameters, including amplitudes Âk(tl), frequencies f̂k(tl), and phase ϕ̂k(tl), from
speech x(t) by QHM methods;
Step 2: Parameters modification
Scale the frequencies of all components by Eq. (5.20);
Adjust the amplitudes of all components by Eq. (5.21);
Scale the phase difference of pitch components by Eq. (5.22);
Calculate the relative phase delay of all components by Eq. (5.8);
Calculate the phase of all components for scaled speech by Eq. (5.23);
Linearly interpolate Ãk(tl) into Ãk(t);
Cubically interpolate f̃k(tl) into f̃k(t);
Calculate the instantaneous phase ϕ̃k(tl) by Eq. (5.24);
Step 3: Generation
x̃(t)← ∑

K
k=−K Ãk(t)eiϕ̃k(t);

Output: x̂(t)
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Figure 5.6: The waveforms of ground truth and pitch-scaled speech based on QHM methods.

Speech Modification based on QHM-GAN

As mentioned before, the central principle underlying QHM-GAN-based speech modification

lies in scaling the rotation angles of all quasi-harmonic components simultaneously. Given that

each quasi-harmonic component is represented as a sinusoidal waveform, it can be individually

modified by applying an appropriate scale factor. As with conventional QHM-based modification
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Figure 5.7: The spectrograms of ground truth and pitch-scaled speech based on QHM methods.

methods, it is first necessary to calculate the phase difference between adjacent frames. These

framewise phase differences are then scaled accordingly. Notably, the phase estimated by QHM-

GAN is unwrapped across frames, allowing direct computation of the phase difference from the

estimated instantaneous frequencies and phase compensation terms.

Based on Eq. (4.2), the phase difference of the k-th harmonic component at frame l can be

formulated as

∆φ
l
k = ϕ̂k(tl)− ϕ̂k(tl−1)

=
∫ tl

tl−1

2π f̂k(u)du+∆ϕ
l
k, (5.26)

where ∆ϕ l
k represents the phase compensation term estimated by the neural network, and f̂k(u)

denotes the instantaneous frequency of the k-th component.

We first consider time-scale modification. Let t̃l denote the modified time instant at frame l,

and let βl be the time-scale factor at that frame. Under time scaling, the frequencies of each

component remain unchanged. Therefore, using the scaled phase differences, the phase at each
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Figure 5.8: Generator architecture of QHM-GAN for pitch-scale modification.

frame for the modified speech is given by

ϕ̃k(t̃l) =
l

∑
i=1

βi∆φ
i
k

=
∫ t̃l

0
2π f̂k(u)du+

l

∑
i=1

βi∆ϕ
i
k, (5.27)

where the summation accumulates the scaled phase compensation over time. After the modified

framewise phase and frame-shift are obtained, the time-scaled waveform can be generated by

substituting these parameters into the QHM-GAN synthesis process.

Likewise, pitch-scale modification can be formulated as a scaling of the rotation angles, since

shifting the frequencies directly changes the rate of phase accumulation. Let ρl be the pitch-scale

factor at frame l, and let f̃k(u) = ρl f̂k(u) denote the pitch-shifted frequency. The phase at each

frame center under pitch scaling can then be written as

ϕ̃k(tl) =
l

∑
i=1

ρi∆φ
i
k

=
∫ tl

0
2π f̃k(u)du+

l

∑
i=1

ρi∆ϕ
i
k, (5.28)

where the integral reflects the accumulation of the scaled instantaneous frequency, and the sum-

mation accounts for the scaled phase compensation.

It is important to note that the phase compensation term ∆ϕ i
k in Eq. (5.28) is predicted using

the original f0 as input, rather than the pitch-scaled f0. In contrast, the harmonic amplitudes

should be estimated using the scaled input, i.e., ρl f0. To address this inconsistency, a dual-input

structure is adopted, as illustrated in Fig. 5.8. In this design, both the original f0 and the scaled

f0 are simultaneously input to the neural network. The original f0 is used to predict the phase

compensation, while the scaled f0 is used to estimate the harmonic amplitudes. This strategy

enables high-fidelity pitch- and time-scale speech modification using the QHM-GAN architecture.
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Likewise, the parameters of quasi-harmonics for original speech are denoted as Âk(t), f̂k(t),

and ϕ̂k(t), respectively, whereas those for pitch-scaled speech are denoted as Ãk(t), f̃k(t), and

ϕ̃k(t), respectively. Then, we demonstrate the specific modification algorithm, which can modify

the speech signals in terms of both time-scale and pitch-scale simultaneously. The details are as

follows:

1. Time instant scaling: The time instants of each frame center should be scaled; in other

words, the frame-shift is scaled, as

t̃l = t̃0 +
l

∑
i=1

βi(ti− ti−1), t̃0 = 0. (5.29)

2. Amplitude adjustment: The amplitudes of each component for modified speech can be

obtained by

Ã(t̃l) = GQHM−GAN(l,cl, f̃ (t̃l)), (5.30)

where GQHM−GAN is the generator of QHM-GAN and c is the mel-spectrogram.

3. Phase compensation estimation: The phase compensation for the original synthesis should

be estimated by

∆ϕ
l
k = GQHM−GAN(l,cl, f̃ (t̂l)). (5.31)

4. Phase adjustment: The phase of all components for scaled speech should be estimated by

ϕ̃k(tl) =
l

∑
i=1

βiρi∆φ
i
k

=
∫ t̃l

0
2π f̃k(u)du+

l

∑
i=1

βiρi∆ϕ
i
k, (5.32)

5. Instantaneous parameters: After obtaining the framewise amplitudes and phases, their

instantaneous version can be obtained by linear interpolation and cubic interpolation, re-

spectively, i.e., Ãk(t̃) and ϕ̃k(t̃).

6. Final synthesis: Finally, the modified speech can be generated by

x̃(t) =
K

∑
k=−K

Ãk(t)eiϕ̃k(t). (5.33)

A pseudocode is also elaborated in Algorithm 6.
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Algorithm 6 Time- and pitch-scale speech modification based on QHM-GAN.

Step 1: Preprocessing and Setting
Train the QHM-GAN with the dataset; set the time-scale factor βl and the pitch-scale factor ρl ;
Step 2: Parameters modification
Scale the time instants by Eq. (5.29);
Adjust the framewise amplitudes of all components by Eq. (5.30);
Linearly interpolate the framewise amplitudes to obtain the instantaneous amplitudes;
Obtain the phase compensations of all components at all frame centers by Eq. (5.31);
Calculate the phase of all components at all frame centers by Eq. (5.32);
Cubically interpolate the framewise phases to obtain the instantaneous phases;
Step 3: Generation
x̃(t)← ∑

K
k=−K Ãk(t)eiϕ̃k(t);

Output: x̂(t)

Speech Modification based on QHARMA-GAN

Similar to QHM-GAN, QHARMA-GAN also modifies the speech by directly estimating the

quasi-harmonic parameters for modified speech. However, there are some differences. First, due

to the estimation of ARMA models, the spectral envelope can always be smooth over frequency.

Therefore, the amplitudes of arbitrary frequencies can be easily estimated once the coefficients

are obtained. Additionally, f0 is not used during the process of the DNN; therefore, the modifica-

tion of QHARMA-GAN is more flexible because of the lack of repeated process, e.g., the phase

compensation and amplitude are separately estimated with different inputs of the DNN, as shown

as Fig. 5.8.

For the time-scale modification, the time instants are also scaled, while the framewise phase

can be obtained by the phase delay calculated from the ARMA model. Let us consider the phase

increment at the l-th frame, we can easily get the phase increment as

ϕ̂k(tl)− ϕ̂k(tl−1) = ϕ
u
k (tl)+∠H(tl,ωk)− [ϕu

k (tl−1)+∠H(tl−1,ωk)]

=
∫ tl

tl−1

2π f̂k(u)du+[∠H(tl,ωk)−∠H(tl−1,ωk)] , (5.34)

where Eqs. (4.14) and (4.15) are considered. Observing the definition of relative phase from

Eq. (5.3) to Eq. (5.5), we can obtain a similar relationship between fundamental component and

harmonic components, as

ϕ̂0(tl)− ϕ̂0(tl−1) =
∫ tl

tl−1

2π f̂0(u)du+θ
′
0 (5.35)

ϕ̂k(tl)− ϕ̂k(tl−1) =
∫ tl

tl−1

2πk f̂0(u)du+θ
′
k (5.36)

where θ ′0 = ∠H(tl,ω0)−∠H(tl−1,ω0) and θ ′k = ∠H(tl,ωk)−∠H(tl−1,ωk). θ ′0 and θ ′k can be
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considered as the initial phase of the current frame. Therefore, it is easy to obtain

θ
′
k− kθ

′
0 = [ϕ̂k(tl)− ϕ̂k(tl−1)]− k [ϕ̂0(tl)− ϕ̂0(tl−1)] (5.37)

Similar to QHM methods, once the relative phase is obtained, the phases of all harmonic compo-

nents can be determined to ensure waveform shape invariance, regardless of how the fundamental

phase is modified. In QHARMA-GAN, this property is further guaranteed since the ARMA co-

efficients uniquely determine the phase delay, i.e., θ ′k− kθ ′0. Thus, even when the frame-shift is

scaled for time modification, the synthesis process preserves the relative phase, maintaining both

waveform shape and spectral envelope without additional adjustments.

For pitch-scaled speech modification, unlike the conventional QHM-based approaches, where

the spectral envelope is typically estimated using the DAP method, which approximates the am-

plitude of each harmonic component based on a discretely estimated autoregressive model and

is inherently limited by its dependency on framewise estimation and its inability to capture fine-

grained temporal dynamics, QHARMA-GAN adopts a more advanced strategy by directly learn-

ing the parameters of an autoregressive moving average (ARMA) model from data. Since the

ARMA coefficients perform full-band modeling over 0– fs
2 , this end-to-end neural estimation en-

ables simultaneous prediction of both amplitude and phase delay for all components at any posi-

tion, thereby achieving higher fidelity in capturing resonance structures. Benefiting from the avail-

ability of sufficient training data, QHARMA-GAN is capable of estimating more accurate phase

delays for shifted frequencies. As a result, QHARMA-GAN achieves better spectral-envelope-

invariant pitch modification even without explicitly modeling the relative phase delay, offering a

significant advantage over conventional QHM methods in pitch-scaling tasks.

However, it is important to note a common limitation inherent to all methods based on the

QHM structure, including QHM, BP-QHM, QHM-GAN, and QHARMA-GAN, when applied to

pitch-scale modification. These methods synthesize both voiced and unvoiced components using

sums of sinewaves. While this is effective for modeling periodic (voiced) signals, it presents a

challenge for unvoiced segments, which are inherently aperiodic and noise-like. When the pitch

is increased, the number of quasi-harmonics within the analysis bandwidth decreases, leading to a

sparse harmonic representation. Consequently, the synthesized unvoiced speech may undesirably

exhibit harmonic artifacts, giving it an unnatural tonal or “voiced-like” quality.

To mitigate this issue, a dedicated strategy is employed that involves the separate processing of

voiced and unvoiced segments. A voiced/unvoiced (V/UV) detection algorithm is first applied to

segment the speech signal accordingly. For voiced frames, pitch-scaling is performed by adjusting

both frequency and amplitude parameters based on the modified f0. For unvoiced frames, the

original parameters are retained without modification, preserving the stochastic nature of noise

components. After both voiced and unvoiced segments are synthesized independently using their

respective parameter sets, they are seamlessly concatenated to produce the final modified speech
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waveform. This hybrid strategy effectively balances flexibility in pitch manipulation with the

preservation of naturalness in unvoiced segments, further enhancing the quality of pitch-scaled

speech synthesized within the QHM framework.

In the following part, we present a detailed speech modification algorithm capable of achiev-

ing high-quality results for both time-scale and pitch-scale transformations simultaneously. The

quasi-harmonic parameters of the original speech are denoted as Âk(t), f̂k(t), and ϕ̂k(t), represent-

ing the amplitude, frequency, and phase, respectively. Similarly, the parameters for the modified

(pitch-scaled) speech are denoted as Ãk(t), f̃k(t), and ϕ̃k(t). After obtaining the ARMA coeffi-

cients from a DNN, we define the time-scale and pitch-scale factors at the l-th frame as βl and ρl ,

respectively. The detailed process is described as follows:

1. Time instant scaling: The temporal locations of frame centers are rescaled according to the

time-scale factor, i.e.,

t̃l = t̃0 +
l

∑
i=1

βi(ti− ti−1), t̃0 = 0. (5.38)

2. Frequency modification: The frequencies are adjusted based on whether the frame is

voiced or unvoiced:

Voiced: f̃ l
k,v = ρl f̂ l

k, Unvoiced: f̃ l
k,uv = f̂ l

k, (5.39)

where f̃ l
k,v and f̃ l

k,uv denote the modified frequencies for voiced and unvoiced segments,

respectively.

3. Amplitude estimation: The amplitudes for the voiced and unvoiced segments are estimated

as:

Ãv
k(t̃l) =VUVl×Gl

r

∏
j=1
|H̃ j(t̃l,2π f̃ l

k,v)|=VUVl×|Gl|
r

∏
j=1

∣∣∣1+∑
Q/r
q=1 bl

j,qe−i2π f̃ l
k,vq
∣∣∣

∣∣∣1+∑
P/r
p=1 al

j,pe−i2π f̃ l
k,v p
∣∣∣
, (5.40)

Ãuv
k (t̃l) = (1−VUVl)×G

r

∏
j=1
|H̃ j(t̃l,2π f̃ l

k,uv)|=VUVl×|Gl|
r

∏
j=1

∣∣∣1+∑
Q/r
q=1 bl

j,qe−i2π f̃ l
k,uvq
∣∣∣

∣∣∣1+∑
P/r
p=1 al

j,pe−i2π f̃ l
k,uv p
∣∣∣
,

(5.41)

where VUVl is a binary flag indicating whether the l-th frame is voiced (VUVl = 1) or

unvoiced (VUVl = 0).

4. Phase delay estimation: To ensure smooth phase continuity, the phase delays are calculated

separately for voiced and unvoiced components. This is done by applying the frequencies

from Eq. (5.39) into the phase response function in Eq. (4.14), i.e., ∠H(t̃l,2π f̃ l
k,v) and
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∠H(t̃l,2π f̃ l
k,uv).

5. Phase estimation: The resulting phase delays are employed to calculate the framewise

phases for both voiced and unvoiced speech using Eq. (4.15), i.e., ϕ̃u
k (t̃l) and ϕ̃uv

k (t̃l). The

phase of the excitation signal in Eq. (4.14) can then be computed efficiently as follows:

ϕ
u
k (t̃l) =

∫ t̃l

0
2π f̃k(u)du

≈ π

l

∑
i=1

[ f̃ i−1
k + f̃ i

k](ti− ti−1)βl, (5.42)

where f̃ i
k should be substituted with either f̃ l

k,v or f̃ l
k,uv depending on the voicing. The frame-

wise phases of all components can be computed as

ϕ̃k,v(t̃l) = π

l

∑
i=1

[ f̃ i−1
k,v + f̃ i

k,v](ti− ti−1)βl +∠H(tl,2π f̃ l
k,v) (5.43)

ϕ̃k,uv(t̃l) = π

l

∑
i=1

[ f̃ i−1
k,uv + f̃ i

k,uv](ti− ti−1)βl +∠H(t̃l,2π f̃ l
k,uv) (5.44)

6. Instantaneous parameter interpolation: Linear and cubic interpolation methods are ap-

plied to obtain the instantaneous amplitude and phase for each harmonic component:

Ãv
k(t̃), Ãuv

k (t̃), ϕ̃k,v(t̃), ϕ̃k,uv(t̃).

7. Final synthesis: The modified speech waveform is synthesized by summing the quasi-

harmonic components for both voiced and unvoiced parts:

x̃(t̃) =x̃uv(t̃)+ x̃v(t̃)

=
K

∑
k=−K

Ãv
k(t̃)e

iϕ̃k,v(t̃)+
K

∑
k=−K

Ãuv
k (t̃)eiϕ̃k,uv(t̃). (5.45)

A pseudocode is also elaborated in Algorithm 7. Additionally, an example of time-scale speech

modification and an example of pitch-scaled speech modification based on QHARMA-GAN

methods are illustrated in Figs. 5.9 and 5.11, respectively, where the corresponding spectrograms

are demonstrated in Figs. 5.10 and 5.12, respectively.

5.5 Experimental Evaluations

5.5.1 Experimental Design and Evaluation Aspects

To comprehensively assess the performance of the proposed methods, including QHM-GAN and

QHARMA-GAN, we conduct a series of experiments and compare them against several state-of-
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Algorithm 7 Time- and pitch-scale speech modification based on QHARMA-GAN.

Step 1: Preprocessing and Setting
Train the QHARMA-GAN with the dataset and infer the ARMA coefficients from DNN part; set the
time-scale factor βl and the pitch-scale factor ρl ;
Step 2: Parameters modification
Scale the time instants by Eq. (5.38);
Shift the frequencies of unvoiced and voiced segments by Eq. (5.39);
Obtain the framewise amplitudes of all components at unvoiced and voiced segments, respectively, by
Eqs. (5.40) and (5.41);
Linearly interpolate the framewise amplitudes to obtain the instantaneous amplitudes;
Obtain the phase delay of all components at all frame centers, i.e., ∠H(t̃l ,2π f̃ l

k,v) and ∠H(t̃l ,2π f̃ l
k,uv).;

Calculate the phase of all components at all frame centers by Eqs. (5.43) and (5.44);
Cubically interpolate the framewise phases to obtain the instantaneous phases;
Step 3: Generation
x̃(t)← ∑

K
k=−K Ãv

k(t̃)e
iϕ̃k,v(t̃)+∑

K
k=−K Ãuv

k (t̃)eiϕ̃k,uv(t̃);
Output: x̂(t)
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Figure 5.9: The waveforms of ground truth and time-scaled speech based on QHARMA-GAN.

the-art neural vocoders. The evaluation focuses on time-scale and pitch-scale speech modification

quality. Both objective and subjective metrics are employed to quantify the modification perfor-

mance.

The detailed experimental conditions and results are presented and discussed in the following

subsections. The experiments consist of four parts.
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Figure 5.10: The spectrograms of ground truth and time-scaled speech based on QHARMA-GAN.

(1) The experiments for time-scale modification.

For the time-scale modification, we use objective measurement indicators to assess the per-

formance of all methods (including WORLD, QHM, QHM-GAN, and QHARMA-GAN) in

terms of time-scale modification quality. The experimental results show the comparable per-

formances of QHM and QHARMA-GAN, both outperforming WORLD and QHM-GAN.

(2) The preliminary experiments for pitch-scale modification to show the best vocoders in

the candidate methods.

For the pitch-scale modification, first, we use objective measurement indicators to assess

the performances of all neural vocoders in terms of modification quality. Subsequently, the

screened-out methods, including the best one of other neural vocoders and the best one be-

tween QHM-GAN and QHARMA-GAN, will be compared with the conventional vocoders,

such as WORLD and QHM.

(3) The main experiment for pitch-scale modification of selected neural and conventional

vocoders.

Second, both objective and subjective evaluation metrics are jointly employed to compre-

hensively assess the quality of the speech modified by all candidate methods. The objective
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Figure 5.11: The waveforms of ground truth and pitch-scaled speech based on QHARMA-GAN.

metrics provide quantifiable measurements of intelligibility and spectral fidelity, while the

subjective evaluations reflect human perceptual preferences and naturalness. This combined

evaluation strategy ensures a thorough and balanced assessment of the synthesis perfor-

mance.

(4) The generalization ability of neural vocoders in terms of pitch modification.

Finally, to evaluate the generalization capability, which is a critical property for neural

vocoders, we assess the performance of all candidate neural vocoders with an out-of-distribution

(OOD) generalization. These evaluations aim to verify whether the models can maintain

modification quality when confronted with unseen conditions.

Through these evaluations, we aim to demonstrate the superior performance of QHM-GAN and

QHARMA-GAN in pitch-scaled speech modification.

5.5.2 Experimental Conditions

This section provides a detailed description of the experimental setup.
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Figure 5.12: The spectrograms of ground truth and pitch-scaled speech based on QHARMA-GAN.

Model Settings: All models used in the experiments are those trained in Section III of Chapter

IV without any additional fine-tuning.

Dataset: The experimental utterances are randomly selected from three widely used open-source

corpora, covering both single-speaker and multi-speaker scenarios. Specifically, we use the VCTK

corpus [95], which contains recordings from 110 English speakers sampled at 24 kHz, and the

Japanese Versatile Speech (JVS) corpus [96], which includes speech from 100 Japanese speakers,

also sampled at 24 kHz. The data splitting strategy follows the same configuration as in Section

III of Chapter IV.

Evaluation Metrics: To objectively and subjectively assess the performance of QHM-GAN and

QHARMA-GAN against baseline neural and conventional vocoders, we adopt a comprehensive

set of evaluation metrics, including V/UV Error Rate, f0 RMSE, UTMOS, MCD, and MOS.

These indicators are used to quantify the pitch accuracy, spectral fidelity, V/UV classification

accuracy, intelligibility, and perceptual naturalness.

Regarding the model candidates, Vocos [5] and hn-NSF [7] are selected as representative

neural vocoders, while QHM and WORLD are adopted as conventional CSP-based vocoders.
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These models are compared with the proposed QHM-GAN and QHARMA-GAN. Additionally, a

lightweight variant of QHARMA-GAN, referred to as QHARMA-GAN-small, is included to in-

vestigate the trade-off between model complexity and performance. An overview of all evaluated

models is provided below:

1) WORLD: A conventional source-filter vocoder based on the CSP framework that enables

flexible manipulation of acoustic features such as f0. It decomposes speech into spectral

envelope, aperiodicity, and f0, and reconstructs the waveform through signal processing.

Due to its interpretability and decent synthesis quality, WORLD is widely adopted as a

baseline in vocoding and voice conversion tasks.

2) QHM: A quasi-harmonic modeling method that incorporates frequency correction to re-

fine the harmonic structure of speech. It estimates frame-wise complex amplitudes for each

quasi-harmonic component, allowing for adaptive frequency adjustment. The corrected am-

plitudes and frequencies are then used to generate high-fidelity speech, which can be further

modified in both time and frequency domains via the DAP representation.

3) Vocos: The pitch-controllable variant of Vocos proposed in [99] integrates external har-

monic components derived from f0 priors, enabling flexible pitch editing under a source-

filter framework. In this study, we adopt a similar approach for f0 extrapolation. Multi-

Period Discriminator (MPD) and Multi-Resolution Discriminator (MRD) are utilized during

training.

4) hn-NSF: A neural source-filter vocoder that employs a harmonic-plus-noise excitation sig-

nal derived from f0 priors. The excitation is passed through a learnable filter that adjusts

its spectral response to produce the final waveform. Adversarial training with HiFi-GAN

discriminators is employed to improve naturalness and fidelity. This architecture allows for

direct pitch modification and has been widely applied in pitch-controllable synthesis tasks.

5) QHM-GAN: Our proposed model that integrates CSP-based QHM with neural networks to

achieve flexible and high-quality speech synthesis. A neural network maps mel-spectrograms

to frame-wise complex amplitudes and phase compensation terms, which are then fed into

the QHM synthesizer to generate the waveform. Adversarial training using MPD and MRD

improves output fidelity and perceptual quality.

6) QHARMA-GAN: An enhanced version of QHM-GAN that incorporates autoregressive

moving average (ARMA) modeling to improve spectral envelope representation. The ar-

chitecture remains similar to QHM-GAN, consisting of four MRF modules, but instead of

predicting complex amplitudes directly, the network estimates ARMA coefficients from the

input mel-spectrogram. These coefficients guide the synthesis process, allowing explicit
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control over spectral shaping. To improve both stability and perceptual quality, MRD, MSD

(Multi-Scale Discriminator), and MPD are used during training.

7) QHARMA-GAN-small: A compact and efficient variant of QHARMA-GAN. It comprises

three MRF modules with fixed dilation rates, following a similar design to QHM-GAN-

small. The model predicts ARMA coefficients from mel-spectrograms, and MRD, MSD,

and MPD are adopted to maintain synthesis quality despite the reduced model capacity.

5.5.3 The Experiments for Time-scale Modification

This section presents a comprehensive comparison of time-scale speech modification performance

among several widely used vocoders, including conventional vocoders (WORLD and QHM) and

our proposed models (QHM-GAN and QHARMA-GAN).

Table 5.1 reports the performance under four time-scale factors: βl ≡ 2−1, βl ≡ 2−0.5, βl ≡ 20.5,

and βl ≡ 21. Among all methods, WORLD achieves the best V/UV error rate, indicating its

strength in preserving voicing structure. However, it exhibits relatively high f0 RMSE, suggesting

inaccurate pitch preservation during time-scaling. This is mainly because WORLD is unable to

correct the frequency estimates, which are usually insufficiently accurate.

In contrast, QHM shows the lowest f0 RMSE among all models, demonstrating its excellent

ability to maintain pitch accuracy during time-scale modification. This stems from its waveform-

shape-invariant modeling, which directly controls frequency trajectories. In terms of spectral

fidelity, QHM achieves the lowest MCD due to its inherent waveform preservation, which en-

sures a consistent spectral envelope after time-scale modification. However, QHM yields poor

V/UV accuracy, as it uses sinewaves to model both voiced and unvoiced segments. This model-

ing leads to confusion during voiced/unvoiced classification, where unvoiced segments are often

misidentified as voiced.

A similar tendency is observed in QHM-GAN and QHARMA-GAN. Their QHM-based struc-

tures inherit the same limitations regarding unvoiced segment modeling. As a result, their V/UV

error rates are only slightly better than that of QHM, though still far worse than WORLD.

The proposed QHARMA-GAN also demonstrates competitive performance: it achieves rela-

tively low f0 RMSE, similar to QHM, and its UTMOS score is close to QHM, indicating compa-

rable perceptual quality. Although its MCD is slightly higher, suggesting mild spectral distortion,

QHARMA-GAN still maintains better overall balance among all evaluation metrics.

In summary, QHM and QHARMA-GAN demonstrate the best time-scale modification perfor-

mance. QHM excels in pitch accuracy and spectral fidelity, while QHARMA-GAN offers com-

parable quality with added flexibility and robustness from neural modeling. Both significantly

outperform conventional neural vocoders in this task.
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Table 5.1: Results of objective evaluations for time-scale modification. The UTMOS values of the ground
truth samples for VCTK and JVS without modification were 4.04 and 3.63, respectively.

Metric Dataset Scale WORLD QHM QHM-GAN QHARMA-GAN

V/UV rate [%] ↓

VCTK

βl ≡ 2−1 13 17 18 15

βl ≡ 2−0.5 12 16 16 14

βl ≡ 20.5 11 17 15 13

βl ≡ 21 11 20 15 15

JVS

βl ≡ 2−1 12 16 18 12

βl ≡ 2−0.5 11 16 16 11

βl ≡ 20.5 11 18 16 11

βl ≡ 21 11 22 17 11

f0 RMSE [Hz] ↓

VCTK

βl ≡ 2−1 0.07 0.05 0.05 0.05

βl ≡ 2−0.5 0.06 0.04 0.05 0.05

βl ≡ 20.5 0.06 0.04 0.05 0.05

βl ≡ 21 0.06 0.04 0.06 0.06

JVS

βl ≡ 2−1 0.12 0.08 0.09 0.11

βl ≡ 2−0.5 0.11 0.07 0.09 0.09

βl ≡ 20.5 0.11 0.05 0.10 0.09

βl ≡ 21 0.10 0.05 0.11 0.09

MCD [dB] ↓

VCTK

βl ≡ 2−1 3.73 3.48 4.27 5.28

βl ≡ 2−0.5 3.25 3.03 4.17 4.31

βl ≡ 20.5 2.68 2.66 4.33 4.67

βl ≡ 21 2.54 2.67 4.46 5.21

JVS

βl ≡ 2−1 3.55 2.99 4.01 4.91

βl ≡ 2−0.5 3.19 2.63 3.99 4.29

βl ≡ 20.5 2.73 2.34 4.25 4.72

βl ≡ 21 2.62 2.34 4.41 5.54

UTMOS ↑

VCTK

βl ≡ 2−1 2.41 2.54 2.15 2.50

βl ≡ 2−0.5 3.34 3.56 3.09 3.49

βl ≡ 20.5 3.25 3.57 2.61 3.57

βl ≡ 21 2.76 3.13 1.89 3.19

JVS

βl ≡ 2−1 1.68 1.87 1.46 1.85

βl ≡ 2−0.5 2.52 2.91 2.09 2.86

βl ≡ 20.5 2.61 3.23 2.26 3.24

βl ≡ 21 2.29 2.89 1.90 2.90

5.5.4 Preliminary Pitch-scale Modification Experiments for Baseline Screening

This section presents the preliminary comparison between the performances of several widely

used neural vocoders (including Vocos and hn-NSF) and our proposed models in terms of speech
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modification quality.

Table 5.2 presents the performance of f0 extrapolation under different pitch-scale factors: ρl ≡
2−1, ρl ≡ 2−0.5, ρl ≡ 20.5, and ρl ≡ 21. Among all methods, Vocos attains the best MCD score,

with UTMOS comparable to hn-NSF. However, its notably high f0 RMSE indicates a failure in

accurate pitch modification.

By contrast, hn-NSF shows relatively stable f0 RMSE values, suggesting effective pitch control,

but it struggles to maintain synthesis quality under extreme pitch-scale conditions (i.e., ρ ≡ 2−1

or 21).

For the proposed methods, QHM-GAN achieves a satisfactory f0 RMSE, reflecting reliable

pitch control. Nevertheless, it has the worst MCD scores due to insufficient resonance model-

ing and inaccurate amplitude estimation, resulting in considerable spectral distortion and lower

perceptual quality, as evidenced by its lowest UTMOS.

QHARMA-GAN, on the other hand, exhibits consistently strong performance across all pitch-

scale factors. Its low V/UV error rates and minimal f0 RMSE demonstrate accurate pitch extrap-

olation with little spectral distortion. The higher UTMOS further confirms that QHARMA-GAN

provides the most effective and perceptually natural f0 extrapolation among the evaluated meth-

ods.

To further demonstrate f0 extrapolation performance, Fig. 5.13 shows spectrograms of a pitch-

scaled speech sample (ρ ≡ 21) generated by different methods. It is clear that Vocos fails to pro-

duce the correct pitch, and both Vocos and hn-NSF have difficulty reconstructing high-frequency

harmonics. In contrast, QHM-GAN and QHARMA-GAN successfully synthesize these harmon-

ics, producing clear and sharp high-frequency trajectories in the spectrogram. Nonetheless, QHM-

GAN exhibits some aliasing artifacts. Overall, QHARMA-GAN achieves the best performance in

f0 extrapolation.

Based on the above analysis, the main experiment focuses on comparing QHARMA-GAN with

conventional vocoders (QHM and WORLD) regarding their f0 extrapolation capabilities.

5.5.5 Evaluation of Pitch-scale Modification Quality

This section presents the performance of selected methods, including WORLD, QHM, QHARMA-

GAN, and QHARMA-GAN-small, in terms of f0 manipulation, specifically focusing on f0 extrap-

olation. A total of 1885 utterances from VCTK and 980 utterances from JVS were pitch-scaled

using factors 2−1, 2−0.5, 20.5, and 21, i.e., ρl ≡ 2−1, ρl ≡ 2−0.5, ρl ≡ 20.5, and ρl ≡ 21. The

averaged quantitative results are summarized in Table 5.3.

Consistent with previous findings, QHM achieved the best performance in terms of f0 RMSE

due to its effective frequency adaptation, while QHARMA-GAN obtained the best V/UV detec-

tion rate. From the perspective of the pitch-scaled speech quality, QHM exhibited the poorest

performance among the compared methods. This is attributed to its lack of explicit spectral enve-
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Table 5.2: Results of objective evaluations for f0 modification. The UTMOS values of the ground truth
samples for VCTK and JVS without modification were 4.04 and 3.63, respectively.

Metric Dataset Scale Vocos hn-NSF QHM-GAN QHARMA-GAN

V/UV rate [%] ↓

VCTK

ρl ≡ 2−1 15 15 18 14

ρl ≡ 2−0.5 12 12 16 13

ρl ≡ 20.5 14 14 17 11

ρl ≡ 21 13 27 18 13

JVS

ρl ≡ 2−1 15 19 17 14

ρl ≡ 2−0.5 14 14 13 12

ρl ≡ 20.5 13 13 13 12

ρl ≡ 21 14 15 15 14

f0 RMSE [Hz] ↓

VCTK

ρl ≡ 2−1 0.65 0.29 0.32 0.11

ρl ≡ 2−0.5 0.33 0.09 0.08 0.08

ρl ≡ 20.5 0.34 0.10 0.08 0.09

ρl ≡ 21 0.67 0.32 0.07 0.10

JVS

ρl ≡ 2−1 0.64 0.28 0.20 0.15

ρl ≡ 2−0.5 0.34 0.15 0.14 0.12

ρl ≡ 20.5 0.35 0.15 0.14 0.14

ρl ≡ 21 0.69 0.19 0.11 0.12

MCD [dB] ↓

VCTK

ρl ≡ 2−1 3.59 5.52 8.81 5.28

ρl ≡ 2−0.5 3.76 4.60 5.51 4.31

ρl ≡ 20.5 3.78 4.98 4.96 4.67

ρl ≡ 21 3.95 5.83 7.27 5.21

JVS

ρl ≡ 2−1 3.62 5.19 6.97 4.91

ρl ≡ 2−0.5 3.63 4.49 5.51 4.29

ρl ≡ 20.5 3.82 4.78 5.34 4.72

ρl ≡ 21 3.88 5.73 6.71 5.54

UTMOS ↑

VCTK

ρl ≡ 2−1 3.49 3.16 1.53 3.14

ρl ≡ 2−0.5 2.78 3.60 2.22 3.61

ρl ≡ 20.5 2.81 2.93 2.47 3.25

ρl ≡ 21 3.03 2.00 1.62 2.68

JVS

ρl ≡ 2−1 2.80 2.34 1.32 2.66

ρl ≡ 2−0.5 1.83 2.79 1.57 3.05

ρl ≡ 20.5 1.73 2.22 1.87 2.23

ρl ≡ 21 1.83 1.37 1.46 1.84

lope modeling and its reliance solely on a shape-invariant modification algorithm, which hinders

accurate modification of the speech signal. Furthermore, the insufficient number of components

representing unvoiced segments becomes more problematic when increasing f0, further degrading
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Figure 5.13: The spectrograms of the speech generated by (a) Vocos, (b) hn-NSF, (c) QHM-GAN, and (d)
QHARMA-GAN with ρ ≡ 21.

the quality of pitch-scaled speech.

By contrast, QHARMA-GAN and WORLD achieve better results due to their explicit modeling

of the spectral envelope. As shown by the MOS scores in Table 5.3, the overall performances

are comparable: QHARMA-GAN, including its smaller variant QHARMA-GAN-small, notably

outperforms WORLD in pitch-lowering scenarios, whereas WORLD performs better in pitch-

raising cases.

A preliminary analysis indicates that this pattern arises since QHARMA-GAN depends on

V/UV detection to selectively modify speech segments. Errors in V/UV detection can lead to

unvoiced segments being misclassified as voiced, reducing the number of components used in

synthesis and consequently degrading speech quality. Therefore, accurate V/UV estimation re-

mains a key challenge and an important direction for future research.

5.5.6 Evaluation of Generalization Ability in Pitch-scale Modification

In this part, we evaluate the generalization ability of neural vocoders in pitch-scale modification

when applied to speech signals that are unseen during training. Specifically, all models, including

Vocos, hn-NSF, and the proposed QHARMA-GAN, are trained using the JVS corpus, which

consists of Japanese speech. Cross-domain robustness is assessed using the OpenSinger dataset
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Table 5.3: Results of objective and subjective evaluations. The MOS of the ground truth samples for VCTK
and JVS datasets without modification were 4.27±0.022 and 3.88±0.038, respectively.

Metric Dataset Scale WORLD QHM QHARMA-GAN
QHARMA-
GAN-small

V/UV rate [%] ↓

VCTK

ρl ≡ 2−1 15 18 14 16

ρl ≡ 2−0.5 14 18 13 14

ρl ≡ 20.5 13 19 11 13

ρl ≡ 21 13 21 13 14

JVS

ρl ≡ 2−1 16 16 14 14

ρl ≡ 2−0.5 14 14 12 13

ρl ≡ 20.5 14 18 12 11

ρl ≡ 21 15 22 13 13

f0 RMSE [Hz] ↓

VCTK

ρl ≡ 2−1 0.13 0.11 0.11 0.11

ρl ≡ 2−0.5 0.10 0.06 0.08 0.09

ρl ≡ 20.5 0.11 0.04 0.09 0.10

ρl ≡ 21 0.16 0.04 0.10 0.11

JVS

ρl ≡ 2−1 0.17 0.13 0.15 0.17

ρl ≡ 2−0.5 0.14 0.08 0.12 0.13

ρl ≡ 20.5 0.16 0.05 0.12 0.12

ρl ≡ 21 0.21 0.05 0.12 0.14

MOS ↑

VCTK

ρl ≡ 2−1 2.98±0.056 2.43±0.043 3.01±0.050 2.99±0.044

ρl ≡ 2−0.5 3.84±0.052 3.11±0.036 3.86±0.033 3.62±0.057

ρl ≡ 20.5 3.78±0.084 3.29±0.072 3.66±0.066 3.29±0.072

ρl ≡ 21 2.82±0.071 2.33±0.064 2.72±0.057 2.69±0.053

JVS

ρl ≡ 2−1 3.03±0.052 2.07±0.025 3.11±0.044 3.08±0.045

ρl ≡ 2−0.5 3.64±0.042 2.85±0.052 3.75±0.049 3.72±0.039

ρl ≡ 20.5 3.82±0.033 3.19±0.058 3.60±0.053 3.63±0.054

ρl ≡ 21 3.08±0.040 2.50±0.040 2.91±0.051 2.89±0.056

[100], which includes Mandarin and Cantonese songs by both male and female singers. Twenty

songs were randomly chosen to ensure gender balance and stylistic diversity, resulting in 727

utterances for evaluation.

Table 5.4 summarizes the f0 extrapolation performance under four pitch-scale factors: ρl ≡ 2−1,

ρl ≡ 2−0.5, ρl ≡ 20.5, and ρl ≡ 21. Among all models, Vocos achieves the lowest MCD scores,

suggesting a strong ability to reconstruct the general spectral shape. Its UTMOS is also compa-

rable to that of hn-NSF. However, Vocos exhibits significantly higher f0 RMSE values across all
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scaling factors, which indicates a failure to track and modify the pitch trajectory accurately. This

problem is particularly pronounced under large pitch-shift conditions and was also observed in

the preliminary experiments reported in Table 5.2. The discrepancy between its spectral fidelity

(low MCD) and pitch accuracy (high f0 RMSE) highlights a fundamental limitation of Vocos in

prosodic control.

In contrast, hn-NSF demonstrates relatively stable f0 RMSE values, implying its effectiveness

in pitch control. However, its synthesis quality degrades under extreme pitch manipulations, as

evidenced by increased MCD and reduced UTMOS when ρ ≡ 2−1 or ρ ≡ 21. For instance, hn-

NSF yields f0 RMSE values of 0.37 and 0.22 under these conditions, respectively, which are

considerably higher than those of QHARMA-GAN. These results suggest that although hn-NSF

retains basic pitch-tracking capability, it fails to preserve the naturalness and harmonic structure

of the singing voice under substantial pitch changes.

On the other hand, QHARMA-GAN achieves consistently strong performance across all pitch-

scale factors. Its low V/UV error rates and stable f0 RMSE values demonstrate accurate control

over pitch modification, even for out-of-distribution singing voices. Furthermore, its ability to

model both amplitude and phase delay through ARMA mechanisms allows it to synthesize har-

monics more naturally and preserve the spectral envelope effectively. As a result, QHARMA-

GAN not only minimizes spectral distortion but also yields the highest UTMOS scores across all

conditions, confirming its superiority in both objective and perceptual metrics.

In summary, QHARMA-GAN exhibits better generalization in cross-domain pitch modifica-

tion tasks, achieving both accurate f0 extrapolation and high-quality synthesis. These results

highlight the robustness and adaptability of the proposed framework when applied to real-world

applications involving diverse languages, musical content, and vocal styles.

5.6 Summary

In this chapter, we introduce speech modification methods based on QHM methods. These meth-

ods estimate the parameters of quasi-harmonics and employ additional processing to modify them

while preserving the spectral envelope, with the aim of generating modified speech. However, the

additional processing methods are typically based on conventional signal processing techniques,

which often lead to inaccurate parameter modification.

Given the well-known robustness of neural-based approaches, we are motivated to utilize neural

networks to estimate parameters for speech modification. Accordingly, we propose QHM-GAN

and QHARMA-GAN, two novel speech modification methods based on a hybrid neural vocoder

framework. These models enable real-time speech modification in terms of both time-scale and

pitch-scale transformation. Benefiting from the robustness of deep neural networks trained on

large-scale datasets, our methods are capable of estimating parameters with high accuracy, which

are then used to synthesize modified speech.
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Table 5.4: Results of objective evaluations for OOD in terms of f0 modification. The UTMOS of the ground
truth samples without modification was 2.42.

Metric Scale Vocos hn-NSF QHARMA-GAN

V/UV rate [%] ↓

ρl ≡ 2−1 9 13 10

ρl ≡ 2−0.5 9 10 9

ρl ≡ 20.5 9 9 9

ρl ≡ 21 9 15 8

f0 RMSE [Hz] ↓

ρl ≡ 2−1 0.71 0.37 0.13

ρl ≡ 2−0.5 0.45 0.29 0.11

ρl ≡ 20.5 0.49 0.17 0.13

ρl ≡ 21 0.79 0.22 0.13

MCD [dB] ↓

ρl ≡ 2−1 5.81 7.33 6.37

ρl ≡ 2−0.5 5.99 6.81 6.43

ρl ≡ 20.5 6.29 7.93 7.61

ρl ≡ 21 6.26 10.42 7.67

UTMOS ↑

ρl ≡ 2−1 1.98 1.58 2.04

ρl ≡ 2−0.5 1.44 1.69 2.20

ρl ≡ 20.5 1.43 1.54 1.58

ρl ≡ 21 1.48 1.36 1.43

Both proposed methods directly estimate the quasi-harmonic parameters required for speech

generation. QHM-GAN, however, requires additional modification of the phase compensation

terms for each component at every frame to avoid phase distortion, resulting in extra computa-

tional cost. Moreover, due to the lack of explicit spectral envelope modeling, QHM-GAN strug-

gles with pitch modification, particularly under large pitch-scale factors. Since it cannot guarantee

the preservation of the spectral envelope, the modified speech is often perceptually distorted.

To address these limitations, we introduce an autoregressive moving average (ARMA) model

into the QHM-GAN architecture, resulting in QHARMA-GAN. The ARMA model enables accu-

rate modeling of the time-varying spectral envelope of speech, allowing for simultaneous estima-

tion of amplitude and phase delay while preserving the spectral shape. As a result, QHARMA-

GAN can generate pitch-modified speech without introducing spectral distortion, thus achieving

high-quality modification.

Thanks to the avoidance of conventional parameter modification and the real-time parameter

estimation enabled by the DNN, QHARMA-GAN supports real-time pitch-scale and time-scale
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modification. This makes it suitable for various practical applications, such as singing voice

transformation.

Experimental results show that QHARMA-GAN produces smoother and more accurate fre-

quency trajectories than baseline methods, and enables stable f0 extrapolation. Moreover, the

model exhibits strong generalization capabilities, suggesting that it can be trained with limited

data and still generate high-quality modified speech for unseen inputs.
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Chapter 6

Conclusion

6.1 Summary of Thesis

This thesis presents a comprehensive exploration into the integration of conventional signal pro-

cessing algorithms with modern deep learning techniques, highlighting a synergistic framework

that advances the development of neural network-based speech modeling. By leveraging the

strengths of both paradigms, we proposed a hybrid system in which conventional signal pro-

cessing was employed to model and synthesize the intrinsic structures of speech, including its

underlying acoustic mechanisms, while neural networks were used to robustly and accurately

infer the required parameters. Through this combination, the proposed neural vocoders were ca-

pable of achieving real-time speech analysis, synthesis, and modification with high fidelity. These

vocoders held potential for deployment in various applications, such as text-to-speech (TTS) sys-

tems, speech restoration for patients with vocal impairments, and general-purpose speech trans-

formation tools.

The main contributions of this thesis can be summarized in three aspects:

1. We show that the backpropagation algorithm can be effectively used in the QHM framework

to optimize quasi-harmonic parameters, demonstrating the feasibility of integrating QHM

into neural systems;

2. We successfully incorporated the QHM structure into neural vocoders, thereby combining

the interpretability and controllability of conventional signal processing with the efficiency

and accuracy of deep learning;

3. We propose real-time speech modification algorithms capable of simultaneously handling

both pitch-scale and time-scale transformations while preserving the naturalness and quality

of the output.

Chapter II provided a review of conventional QHM-based methods (QHM, aQHM, and eaQHM)

and modern neural vocoders, analyzing their respective advantages and limitations. Conventional
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QHM-based methods are shown to be effective in producing high-quality synthesis due to their

strong interpretability and fine-grained control over harmonic components. However, their re-

liance on frame-by-frame analysis leads to computational inefficiency and limited robustness in

parameter estimation. In contrast, neural vocoders demonstrate robustness and high inference ef-

ficiency, particularly when trained on large-scale datasets. Nonetheless, their black-box nature

often results in a lack of interpretability, hindering acoustic feature manipulation. This contrast

inspired the proposed integration strategy, which aims to exploit the complementary properties of

the two approaches.

Chapter III presented the first core contribution of this thesis, i.e., demonstrating that QHM

structures can be optimized through gradient-based learning. Although conventional QHM meth-

ods can refine frequencies using complex amplitudes, they are constrained by the inaccuracy of

amplitude estimation, which in turn limits frequency correction and speech quality. Moreover,

their frame-by-frame structure disrupts temporal coherence. To overcome these issues, we intro-

duced a novel frequency refinement approach that iteratively corrects frequency estimates using

spectrogram-based supervision, independent of amplitude estimation. In addition, we applied

backpropagation to jointly optimize complex amplitudes and frequencies over entire utterances,

rather than frame-wise, and propose a spectrogram-based loss function that bypasses the synthesis

process to increase convexity and accelerate convergence. These innovations enhanced parameter

accuracy and synthesized quality, while also confirming the feasibility of integrating QHM into

differentiable deep learning architectures.

Chapter IV elaborated on the second contribution: the development of a novel vocoder frame-

work that integrates QHM with neural networks. While QHM methods offer strong interpretabil-

ity and support for acoustic manipulation, their parameter estimation is often inaccurate and

time-intensive. In contrast, neural networks can learn complex parameter mappings from large

datasets but typically lack interpretability. Our proposed framework combined these strengths by

using neural networks to infer quasi-harmonic parameters, followed by QHM-based synthesis for

waveform generation. Additionally, we incorporated autoregressive and moving average (ARMA)

models to estimate the spectral envelope, which further enhanced the preservation of vocal timbre

and speaker identity. The resulting system achieved high-quality, real-time synthesis and modifi-

cation, making it well-suited for assistive technologies such as voice prostheses for laryngectomy

patients.

Chapter V discussed in detail the design of speech modification algorithms for both conven-

tional QHM-based methods and neural vocoder-based methods such as QHM-GAN and QHARMA-

GAN. Conventional methods relied on a two-step process involving parameter estimation and

post-modification. However, they required auxiliary models (e.g., DAP) to estimate spectral en-

velopes, and their limited accuracy can impair modification quality. In contrast, the neural meth-

ods were designed to directly infer the parameters of modified speech from modified inputs, en-
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abling real-time processing. Owing to their data-driven nature, these models exhibited superior

generalization and synthesis quality in both pitch and time-scale transformations. Consequently,

the proposed neural vocoders provided a practical framework for high-quality, real-time voice

transformation applications.

In conclusion, this thesis demonstrated that the combination of conventional signal processing

methods and neural networks not only bridges the interpretability gap in current neural vocoders

but also unlocked new possibilities for real-time, high-quality speech modeling and transforma-

tion. The proposed hybrid architecture paved the way for further research in interpretable and

controllable neural speech synthesis, with promising applications in assistive technology, expres-

sive speech synthesis, and voice transformation.

6.2 Future Perspective

Although this thesis has achieved substantial progress, there remain numerous opportunities to

further advance the neural vocoder framework. Beyond methodological improvements, the ap-

proaches developed here hold significant potential for real-world applications that can benefit

human life, such as expressive speech synthesis, assistive technologies, and personalized voice

restoration. The details are as follows:

More Accurate Voiced/Unvoiced Detection: As previously mentioned, the modification mecha-

nism of QHARMA-GAN is fundamentally based on the detection of Voiced/Unvoiced (V/UV)

segments in speech. This is because unvoiced segments, which primarily consist of stochastic,

noise-like components, lack the structured harmonicity required by quasi-harmonic models. Due

to the sparse nature of the harmonic representation, these unvoiced segments are particularly dif-

ficult to model accurately, and are therefore excluded from the modification process. Only the

voiced segments, which exhibit quasi-periodic structures, are considered for modification.

However, the performance of QHARMA-GAN is highly dependent on the accuracy of the

V/UV detection. Existing methods often produce classification errors that degrade the quality

of the speech modification. In particular, when originally voiced segments are misclassified as

unvoiced, the system fails to apply the intended modification, resulting in unnatural discontinuities

or insufficient transformation. Conversely, when unvoiced segments are incorrectly classified

as voiced, they are over-modified by the harmonic model, introducing artificial periodicity into

inherently aperiodic segments, which negatively affects the naturalness of the unvoiced sounds.

To address these limitations, it is essential to develop a more accurate V/UV detection method.

An improved classification system would enhance the reliability of the modification process by

ensuring that only truly voiced segments are modified, while unvoiced segments are appropriately

excluded. This, in turn, would significantly improve the perceptual quality and consistency of the

speech modified by QHARMA-GAN.
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Text-to-Speech Application: Although the proposed vocoder is not specifically designed for end-

to-end text-to-speech (TTS) synthesis, its design philosophy aligns with that of conventional

vocoders, such as WORLD, which emphasize the interpretability and controllability of speech

modeling. The focus of this work has been on analyzing and generating speech signals through

the modeling of f0 and spectral resonance structure. Nevertheless, the method also holds great

potential for downstream applications, particularly in TTS systems.

Incorporating this vocoder into a complete TTS pipeline would require an additional f0 predic-

tion module. While this introduces some implementation complexity compared to typical mel-

spectrogram-based approaches, previous research [103] has demonstrated that such integration is

feasible. Notably, the advantage of using an explicit f0 and spectral parameter representation lies

in its ability to support controllable and expressive speech synthesis. Compared with non-trainable

vocoders like WORLD, the proposed method also benefits from trainable components, allowing

fine-tuning for different tasks. In particular, the proposed vocoder is expected to be effective for

emotional TTS and prosody manipulation, where control over pitch and timbre is crucial.

Future work will explore the integration of this vocoder into full TTS systems, particularly

in the context of emotional speech synthesis and prosodic editing, where its controllability can

be fully exploited. This line of research will further validate the practical applicability of the

proposed vocoder beyond analysis-by-synthesis evaluation.

Voice Conversion Application: The proposed method utilizes autoregressive moving average (A-

RMA) modeling to extract the spectral envelope of speech signals, which inherently captures

speaker-specific acoustic characteristics. This capability provides a robust and promising foun-

dation for voice conversion tasks, where the goal is to transform one speaker’s voice to sound

like another while preserving linguistic content. By manipulating the ARMA coefficients, the

method enables controlled modification of the spectral envelope, facilitating speaker conversion

with fine-grained control over prosodic attributes such as pitch and intonation.

This approach offers significant advantages over conventional voice conversion techniques

based on mel-spectrogram representations. In particular, the explicit parametric form of the

ARMA spectral envelope affords greater interpretability and precision in modifying speaker iden-

tity and timbre. Moreover, it allows for continuous and direct control of pitch through parameter

transformation, thereby enhancing the flexibility and naturalness of the converted speech.

Future research directions will focus on exploring the full potential of the ARMA-based spec-

tral envelope representation to achieve high-quality and pitch-controllable voice conversion. This

includes developing end-to-end frameworks that integrate ARMA parameter manipulation with

neural vocoder synthesis, aiming to extend the applicability of the proposed vocoder architec-

ture beyond conventional speech synthesis toward sophisticated speaker transformation and voice

conversion applications.
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Resonance Characteristics Mapping: The proposed method utilizes an ARMA model composed

of multiple cascaded smaller ARMA components. Each of these smaller ARMA units can be

interpreted as corresponding to distinct physical parts of the vocal tract; for example, one ARMA

component may represent the tongue, another the pharynx, and others the teeth or oral cavity

structures. This decomposition enables the ARMA coefficients to reflect physical characteristics

of the speaker’s vocal tract in a more interpretable and localized manner.

By selectively modifying the coefficients of specific ARMA components, it becomes possible

to realize fine-grained speech modifications that correspond to changes in particular vocal tract

parts. For instance, variations such as a larger or smaller tongue can be modeled by adjusting the

ARMA parameters linked to the tongue component, allowing controllable modification of speech

timbre or articulation.

Moreover, this interpretable mapping between ARMA coefficients and physical vocal tract

structures also holds potential for diagnostic applications, such as identifying anatomical differ-

ences like macroglossia (enlarged tongue) directly from speech signals.

Establishing and refining the mapping between ARMA components and vocal tract anatomy

will likely require data-driven approaches, such as neural networks or other machine learning

methods, to learn the complex relationships involved. Future work will focus on developing

these mappings and applying them to achieve physically interpretable and controllable speech

modification.

Hybrid System: The method proposed in this thesis constitutes a hybrid framework that inte-

grates conventional algorithms with neural network-based approaches. This framework leverages

the advantages of both paradigms while mitigating their respective limitations. Many contempo-

rary studies prioritize the use of neural networks at the expense of system interpretability, often

overlooking underlying physical principles. In contrast, conventional algorithms, although some-

times inferior in performance to neural networks, typically possess clear physical meaning, which

facilitates a deeper understanding of the system and enables more controlled manipulation and

modification.

Consequently, the proposed hybrid framework is not only applicable to the speech analysis,

modification, and synthesis tasks addressed in this work but also has potential extensions to other

fields, such as image detection and generation. By combining the interpretability of traditional

methods with the expressive power of neural networks, this framework supports a more compre-

hensive understanding of algorithmic mechanisms, human physiology, and real-world phenom-

ena. In this sense, the hybrid approach offers new insights and opens avenues for further research

across diverse scientific and engineering fields.

Other Applications: Beyond technical improvements, quasi-harmonic vocoders hold substantial

potential for real-world applications that directly impact human life. For example, individuals
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undergoing laryngectomy due to throat cancer lose their natural voice. By recording their speech

prior to surgery, quasi-harmonic vocoders combined with TTS systems can restore their voice

postoperatively, enabling patients to communicate with their original vocal characteristics. The

controllable and interpretable nature of these vocoders ensures that the reconstructed voice pre-

serves speaker identity, intonation, and expressiveness, which are critical for social interactions

and psychological well-being.

Moreover, the proposed framework employs a decomposition of the ARMA-based spectral

envelope into multiple smaller ARMA components, each of which can be associated with dis-

tinct vocal or phonetic factors. In principle, these components could correspond to individual

phonemes or sub-phonemic features, making it possible to generate speech at a finer granular-

ity. Such a design enables future systems to synthesize speech from text or phonetic inputs more

flexibly, where each letter or phoneme is mapped to specific ARMA parameters. This could signif-

icantly improve both the precision and naturalness of synthetic speech, particularly in applications

requiring personalized or adaptive voice synthesis.

Taken together, these capabilities suggest that quasi-harmonic vocoders not only advance speech

modeling technology but also offer practical benefits to everyday life. They can enhance acces-

sibility for individuals with speech impairments, support personalized virtual assistants, improve

expressive TTS for education and entertainment, and provide tools for creative voice transforma-

tion in music and media. Future research should continue to develop both algorithmic improve-

ments and human-centered applications, emphasizing controllable, interpretable, and high-fidelity

speech synthesis for societal benefit.
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